High levels of follicular fluid testosterone could impair oocyte developmental competency via affecting aryl hydrocarbon receptor pathway in PCOS patients

Author:

Eini Fatemeh,kutenaei Maryam Azizi,Foroutan Tahereh,Salehi Ensieh

Abstract

Abstract Background Although hormonal and metabolic dysfunction have been recognized as a possible cause of polycystic ovarian syndrome (PCOS), the associations between hyperandrogenism and aryl hydrocarbon receptor (Ahr) signaling pathway remains controversial. The current study aimed to investigate the effect of hyperandrogenism on oocyte developmental competency via regarding Ahr signaling downstream pathway in granulosa cells. Materials and methods Granulosa cells were collected from 45 PCOS patients under assisted reproductive technique (ART). Gene expression of Ahr downstream pathway was evaluated based on Reverse Transcription Q-PCR assay. Moreover the correlation was investigated between gene expression and hyperandrogenism, and oocyte developmental competency in PCOS. Results From the 45 PCOS patients, 26 (64.44%) had a high level of follicular fluid testosterone (FFT). Based on the FFT level, two groups of PCOS: HFT (high level of FFT) and non-HFT, were shown significant differences in oocyte and embryo quality, and fertilization and cleavage rates. Moreover, the mean relative expressions of Ahr and Arnt genes were significantly higher in HFT –PCOS group (p < 0.01 and p < 0.01) respectively. Also, the significant positive correlations were obtained for Ahr, Arnt, Cyp1A1, and Cyp1B1 with incidence of clinical hyperandrogenism and FFT level. Besides, our results showed that Ahr, Cyp1A1, and Cyp1B1 gene expression was correlated significantly with fertilization rate. Conclusion The present study suggested that hyperandrogenism could impair oocyte developmental competency via affecting Ahr signaling downstream pathway.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3