Hik28-dependent and Hik28-independent ABC transporters were revealed by proteome-wide analysis of ΔHik28 under combined stress

Author:

Kurdrid Pavinee,Yutthanasirikul Rayakorn,Saree Sirilak,Senachak Jittisak,Saelee Monpaveekorn,Hongsthong Apiradee

Abstract

AbstractSynechocystis histidine kinase, Sll0474: Hik28, a signal protein in a two-component signal transduction system, plays a critical role in responding to a decrease in growth temperature and is also involved in nitrogen metabolism. In the present study, under combined stress from non-optimal growth temperature and nitrogen depletion, a comparative proteomic analysis of the wild type (WT) and a deletion mutant (MT) of Synechocystis histidine kinase, Sll0474: Hik28, in a two-component signal transduction system identified the specific groups of ABC transporters that were Hik28-dependent, e.g., the iron transporter, and Hik28-independent, e.g., the phosphate transporter. The iron transporter, AfuA, was found to be upregulated only in the WT strain grown under the combined stress of high temperature and nitrogen depletion. Whereas, the expression level of the phosphate transporter, PstS, was increased in both the WT and MT strains. Moreover, the location in the genome of the genes encoding Hik28 and ABC transporters in Synechocystis sp. PCC6803 were analyzed in parallel with the comparative proteomic data. The results suggested the regulation of the ABC transporters by the gene in a two-component system located in an adjacent location in the genome.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology

Reference25 articles.

1. Hongsthong A, Sirijuntarut M, Yutthanasirikul R, Senachak J, Kurdrid P, Cheevadhanarak S, et al. Subcellular proteomic characterization of the high-temperature stress response of the cyanobacterium Spirulina platensis. Proteome Sci. 2009;7(33):1–19.

2. Kurdrid P, Senachak J, Sirijuntarut M, Yutthanasirikul R, Phuengcharoen P, Jeamton W, et al. Comparative analysis of the Spirulina platensis subcellular proteome in response to low- and high-temperature stresses: uncovering cross-talk of signaling components. Proteome Sci. 2011;9(39):1–17.

3. Zavřel T, Sinetova MA, Búzová D, Literáková P, Červený J. Characterization of a model cyanobacterium Synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Eng Life Sci. 2014;15(1):122–32.

4. Slabas AR, Suzuki I, Murata N, Simon WJ, Hall JJ. Proteomic analysis of the heat shock response in Synechocystis PCC 6803 and a thermally tolerant knockout strain lacking the histidine kinase 34 gene. Proteomics. 2006;3(53):845–65.

5. Ibrahim IM, Puthiyaveetil S, Allen JF. A Two-Component Regulatory System in Transcriptional Control of Photosystem Stoichiometry: Redox-Dependent and Sodium Ion-Dependent Phosphoryl Transfer from Cyanobacterial Histidine Kinase Hik2 to Response Regulators Rre1 and RppA. Front Plant Sci. 2016;7(137):1–12.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3