Author:
Behrendsen Lena Sophie,Menon Priyanka Rajeev,Khan Muhammad Jawad,Gregus Anke,Wirths Oliver,Meyer Thomas,Staab Julia
Abstract
Abstract
Background
Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor that promotes cell proliferation and immunomodulation in untransformed cells and maintains stemness of transformed cells, facilitating invasion and metastasis. Numerous point mutations in the STAT3 protein have been identified that drive malignancy in various tumor entities. The missense mutation D427H localized in the STAT3 DNA-binding domain has been previously reported in patients with NK/T cell lymphomas. To assess the biological activity of this missense mutation, we compared the STAT3-D427H mutant to wild-type (WT) protein as well as the known hyper-active mutant F174A.
Results
Although previously reported as an activating mutation, the STAT3-D427H mutant neither showed elevated cytokine-induced tyrosine phosphorylation nor altered nuclear accumulation, as compared to the WT protein. However, the D427H mutant displayed enhanced binding to STAT-specific DNA-binding sites but a reduced sequence specificity and dissociation rate from DNA, which was demonstrated by electrophoretic mobility shift assays. This observation is consistent with the phenotype of the homologous E421K mutation in the STAT1 protein, which also displayed enhanced binding to DNA but lacked a corresponding increase in transcriptional activity.
Conclusions
Based on our data, it is unlikely that the D427H missense mutation in the STAT3 protein possesses an oncogenic potential beyond the WT molecule.
Funder
Deutsche Forschungsgemeinschaft
Georg-August-Universität Göttingen
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology
Reference23 articles.
1. Levy DE, Darnell JE. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3:651–62.
2. Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JE, Kuriyan J. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell. 1998;93(5):827–39.
3. Mao X, Ren Z, Parker GN, Sondermann H, Pastorello MA, Wang W, McMurray JS, Demeler B, Darnell JE, Chen X. Structural bases of unphosphorylated STAT1 association and receptor binding. Mol Cell. 2005;17(6):761–71.
4. Wegenka UM, Lütticken C, Buschmann J, Yuan J, Lottspeich F, Müller-Esterl W, Schindler C, Roeb E, Heinrich PC, Horn F. The interleukin-6-activated acute-phase response factor is antigenically and functionally related to members of the signal transducer and activator of transcription (STAT) family. Mol Cell Biol. 1994;14(5):3186–96.
5. Heinrich PC, Behrmann I, Müller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. 1998;334(Pt 2):297–314.