Author:
Thejer Bashar M.,Adhikary Partho P.,Kaur Amandeep,Teakel Sarah L.,Van Oosterum Ashleigh,Seth Ishith,Pajic Marina,Hannan Katherine M.,Pavy Megan,Poh Perlita,Jazayeri Jalal A.,Zaw Thiri,Pascovici Dana,Ludescher Marina,Pawlak Michael,Cassano Juan C.,Turnbull Lynne,Jazayeri Mitra,James Alexander C.,Coorey Craig P.,Roberts Tara L.,Kinder Simon J.,Hannan Ross D.,Patrick Ellis,Molloy Mark P.,New Elizabeth J.,Fehm Tanja N.,Neubauer Hans,Goldys Ewa M.,Weston Leslie A.,Cahill Michael A.
Abstract
Abstract
Background
Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in many cancer cells, where it is associated with detrimental patient outcomes. It contains phosphorylated tyrosines which evolutionarily preceded deuterostome gastrulation and tissue differentiation mechanisms.
Results
We demonstrate that manipulating PGRMC1 phosphorylation status in MIA PaCa-2 (MP) cells imposes broad pleiotropic effects. Relative to parental cells over-expressing hemagglutinin-tagged wild-type (WT) PGRMC1-HA, cells expressing a PGRMC1-HA-S57A/S181A double mutant (DM) exhibited reduced levels of proteins involved in energy metabolism and mitochondrial function, and altered glucose metabolism suggesting modulation of the Warburg effect. This was associated with increased PI3K/AKT activity, altered cell shape, actin cytoskeleton, motility, and mitochondrial properties. An S57A/Y180F/S181A triple mutant (TM) indicated the involvement of Y180 in PI3K/AKT activation. Mutation of Y180F strongly attenuated subcutaneous xenograft tumor growth in NOD-SCID gamma mice. Elsewhere we demonstrate altered metabolism, mutation incidence, and epigenetic status in these cells.
Conclusions
Altogether, these results indicate that mutational manipulation of PGRMC1 phosphorylation status exerts broad pleiotropic effects relevant to cancer and other cell biology.
Funder
Iraqi Cultural Attaché in Canberra
Charles Sturt University
University of Sydney
Australian Research Council
Ramaciotti Foundations
Cancer Institute NSW
National Health and Medical Research Council
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology
Reference88 articles.
1. Riad A, Zeng C, Weng CC, Winters H, Xu K, Makvandi M, Metz T, Carlin S, Mach RH. Sigma-2 receptor/TMEM97 and PGRMC-1 increase the rate of internalization of LDL by LDL receptor through the formation of a ternary complex. Sci Rep. 2018;8(1):16845.
2. Cahill MA, Jazayeri JA, Catalano SM, Toyokuni S, Kovacevic Z, Richardson DR. The emerging role of progesterone receptor membrane component 1 (PGRMC1) in cancer biology. Biochim Biophys Acta. 2016;1866(2):339–49.
3. Ryu CS, Klein K, Zanger UM. Membrane associated progesterone receptors: promiscuous proteins with pleiotropic functions - focus on interactions with cytochromes P450. Front Pharmacol. 2017;8:159.
4. Peluso JJ, Griffin D, Liu X, Horne M. Progesterone receptor membrane component-1 (PGRMC1) and PGRMC-2 interact to suppress entry into the cell cycle in spontaneously immortalized rat granulosa cells. Biol Reprod. 2014;91(5):104.
5. Sueldo C, Liu X, Peluso JJ. Progestin and AdipoQ receptor 7, progesterone membrane receptor component 1 (PGRMC1), and PGRMC2 and their role in regulating Progesterone's ability to suppress human Granulosa/luteal cells from entering into the cell cycle. Biol Reprod. 2015;93(3):63.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献