Uncarboxylated osteocalcin promotes proliferation and metastasis of MDA-MB-231 cells through TGF-β/SMAD3 signaling pathway

Author:

Xu Jiaojiao,Ma Luyao,Wang Danqing,Yang Jianhong

Abstract

Abstract Background Triple-negative breast cancer (TNBC) is the most severe type of breast cancer owing to its high heterogeneity, aggressiveness and lack of treatment. Studies have reported that uncarboxylated osteocalcin (GluOC) promotes the development of prostate and other cancers. Studies have also found elevated levels of serum osteocalcin in breast cancer patients with bone metastasis, and serum osteocalcin can be a marker of bone metastasis. However, whether GluOC promotes the development of TNBC and the related mechanisms need to be further clarified. Results Our results revealed that GluOC is associated with the proliferation and metastasis of MDA-MB-231 cells. GluOC increased the viability and proliferation of MDA-MB-231 cells. In addition, GluOC enhanced the metastatic ability of MDA-MB-231 cells by promoting the expression of matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-13 (MMP13), and vascular endothelial growth factor (VEGF) and inducing epithelial-mesenchymal transition (EMT). We also found that GluOC upregulated the expression of interleukin-8 (IL-8) and parathyroid hormone-related protein (PTHrP) genes in MDA-MB-231 breast cancer cells. Moreover, the promoting effect of GluOC was reversed in MDA-MB-231 breast cancer cells treated with specific inhibitor of SMAD3 (SIS3), a SMAD3 phosphorylation inhibitor. Conclusion Our research proved for the first time that GluOC facilitates the proliferation and metastasis of MDA-MB-231 cells by accelerating the transforming growth factor-β (TGF-β)/SMAD3 signaling pathway. Moreover, GluOC also promotes the gene expression of IL-8 and PTHrP. Both IL-8 and PTHrP can act as osteolytic factors in breast cancer cells. This study indicates that GluOC may be a useful target for preventing TNBC bone metastasis.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3