Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells

Author:

Lee Chia-Wei,Kuo Chia-Chen,Liang Chi-Jung,Pan Huei-Jyuan,Shen Chia-Ning,Lee Chau-Hwang

Abstract

Abstract Background Tunneling nanotubes (TNTs) are special membrane structures for intercellular communications. Vital cargoes (such as mitochondria) could be delivered from healthy cells to rescue damaged ones through TNTs. The TNTs could be utilized for the purpose of systematic delivery of therapeutic agents between cells. However, there are insufficient studies on the controlled enhancement of TNT formations. The purpose of this study is to understand how macrophages influence the TNT formation in cancer cells. Results Here we compared the capabilities of inducing TNTs in human pancreatic cancer cells (PANC-1) of the media conditioned by M0, M1 and M2 macrophages derived from THP-1 cells. The M0 and M1 macrophage conditioned media promoted TNT formation. Using a focused ion beam to cut through a TNT, we observed tunnel-like structures inside dense cytoskeletons with scanning electron microscopy. The TNT formation correlated with raised motility, invasion, and epithelial–mesenchymal transition in the PANC-1 cells. Mitochondria and lysosomes were also found to be transported in the TNTs. Conclusions These results suggest that TNT formation could be one of the responses to the immune stress in pancreatic cancer cells caused by M0 and M1 macrophages. This finding is valuable for the development of macrophage-targeting cancer therapy.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3