Author:
Shaver Mohammad,Gomez Kassandra,Kaiser Katherine,Hutcheson Joshua D.
Abstract
Abstract
Background
Hypertension-induced mechanical stress on vascular smooth muscle cells (VSMCs) is a known risk factor for vascular remodeling, including vascular calcification. Caveolin-1 (Cav-1), an integral structural component of plasma membrane invaginations, is a mechanosensitive protein that is required for the formation of calcifying extracellular vesicles (EVs). However, the role of mechanics in Cav-1-induced EV formation from VSMCs has not been reported.
Results
Exposure of VSMCs to 10% mechanical stretch (0.5 Hz) for 72 h resulted in Cav-1 translocation into non-caveolar regions of the plasma membrane and subsequent redistribution of Cav-1 from the VSMCs into EVs. Inhibition of Rho-A kinase (ROCK) in mechanically-stimulated VSMCs exacerbated the liberation of Cav-1 positive EVs from the cells, suggesting a potential involvement of actin stress fibers in this process. The mineralization potential of EVs was measured by incubating the EVs in a high phosphate solution and measuring light scattered by the minerals at 340 nm. EVs released from stretched VSMCs showed higher mineralization potential than the EVs released from non-stretched VSMCs. Culturing VSMCs in pro-calcific media and exposure to mechanical stretch increased tissue non-specific alkaline phosphatase (ALP), an important enzyme in vascular calcification, activity in EVs released from the cells, with cyclic stretch further elevating EV ALP activity compared to non-stretched cells.
Conclusion
Our data demonstrate that mechanical stretch alters Cav-1 trafficking and EV release, and the released EVs have elevated mineralization potential.
Funder
Florida Heart Research Foundation
National Heart, Lung, and Blood Institute
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献