CREB1 regulates KPNA2 by inhibiting mir-495-3p transcription to control melanoma progression

Author:

Geng Xuerui,Qiu Xiujuan,Gao Jun,Gong Zhifan,Zhou Xiaogang,Liu Chunlei,Luo Haichao

Abstract

Abstract Background Melanoma is a common type of skin cancer, and its incidence is increasing gradually. Exploring melanoma pathogenesis helps to find new treatments. Objective We aimed to explore the potential molecular mechanisms by which CREB1 regulates melanoma. Methods TransmiR and ALGGEN were used to predict targets of CREB1 in the promoter of miR-495-3p or miR-495-3p and KPNA2, and a dual-luciferase reporter assay was performed to detect binding of CREB1 to these promoters. In addition, binding of CREB1 to the miR-495-3p promoter was confirmed by a ChIP assay. qRT‒PCR was carried out to detect mRNA levels of miR-495-3p, CREB1 and KPNA2. An EdU assay was conducted to detect cell viability. Transwell assays and flow cytometry were performed to assess cell migration and invasion and apoptosis, respectively. Moreover, factors associated with overall survival were analysed by using the Cox proportional hazards model. Results Our results show miR-495-3p to be significantly decreased in melanoma. Additionally, miR-495-3p overexpression inhibited melanoma cell viability. CREB1 targeted miR-495-3p, and CREB1 overexpression enhanced melanoma cell viability by inhibiting miR-495-3p transcription. Moreover, miR-495-3p targeted KPNA2, and CREB1 regulated KPNA2 by inhibiting miR-495-3p transcription to enhance melanoma cell viability. Conclusion CREB1 regulates KPNA2 by inhibiting miR-495-3p transcription to control melanoma progression. Our results indicate the molecular mechanism by which the CREB1/miR-495-3p/KPNA2 axis regulates melanoma progression.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3