Interaction between NSMCE4A and GPS1 links the SMC5/6 complex to the COP9 signalosome

Author:

Horváth András,Rona Gergely,Pagano Michele,Jordan Philip W.ORCID

Abstract

Abstract Background The SMC5/6 complex, cohesin and condensin are the three mammalian members of the structural maintenance of chromosomes (SMC) family, large ring-like protein complexes that are essential for genome maintenance. The SMC5/6 complex is the least characterized complex in mammals; however, it is known to be involved in homologous recombination repair (HRR) and chromosome segregation. Results In this study, a yeast two-hybrid screen was used to help elucidate novel interactions of the kleisin subunit of the SMC5/6 complex, NSMCE4A. This approach discovered an interaction between NSMCE4A and GPS1, a COP9 signalosome (CSN) component, and this interaction was further confirmed by co-immunoprecipitation. Additionally, GPS1 and components of SMC5/6 complex colocalize during interphase and mitosis. CSN is a cullin deNEDDylase and is an important factor for HRR. Depletion of GPS1, which has been shown to negatively impact DNA end resection during HRR, caused an increase in SMC5/6 levels at sites of laser-induced DNA damage. Furthermore, inhibition of the dennedylation function of CSN increased SMC5/6 levels at sites of laser-induced DNA damage. Conclusion Taken together, these data demonstrate for the first time that the SMC5/6 and CSN complexes interact and provides evidence that the CSN complex influences SMC5/6 functions during cell cycle progression and response to DNA damage.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Institute of General Medical Sciences

Rosztoczy Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3