Prediction of acid radical ion binding residues by K-nearest neighbors classifier

Author:

Liu Liu,Hu Xiuzhen,Feng Zhenxing,Zhang Xiaojin,Wang Shan,Xu Shuang,Sun Kai

Abstract

AbstractBackgroundProteins perform their functions by interacting with acid radical ions. Recently, it was a challenging work to precisely predict the binding residues of acid radical ion ligands in the research field of molecular drug design.ResultsIn this study, we proposed an improved method to predict the acid radical ion binding residues by using K-nearest Neighbors classifier. Meanwhile, we constructed datasets of four acid radical ion ligand (NO2, CO32−, SO42−, PO43−) binding residues from BioLip database. Then, based on the optimal window length for each acid radical ion ligand, we refined composition information and position conservative information and extracted them as feature parameters for K-nearest Neighbors classifier. In the results of 5-fold cross-validation, the Matthew’s correlation coefficient was higher than 0.45, the values of accuracy, sensitivity and specificity were all higher than 69.2%, and the false positive rate was lower than 30.8%. Further, we also performed an independent test to test the practicability of the proposed method. In the obtained results, the sensitivity was higher than 40.9%, the values of accuracy and specificity were higher than 84.2%, the Matthew’s correlation coefficient was higher than 0.116, and the false positive rate was lower than 15.4%. Finally, we identified binding residues of the six metal ion ligands. In the predicted results, the values of accuracy, sensitivity and specificity were all higher than 77.6%, the Matthew’s correlation coefficient was higher than 0.6, and the false positive rate was lower than 19.6%.ConclusionsTaken together, the good results of our prediction method added new insights in the prediction of the binding residues of acid radical ion ligands.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3