Functional correlation of ATP1A2 mutations with phenotypic spectrum: from pure hemiplegic migraine to its variant forms

Author:

Li Yingji,Tang Wenjing,Kang Li,Kong Shanshan,Dong Zhao,Zhao Dengfa,Liu Ruozhuo,Yu ShengyuanORCID

Abstract

Abstract Background Mutations in ATP1A2, the gene encoding the α2 subunit of Na+/K+-ATPase, are the main cause of familial hemiplegic migraine type 2 (FHM2). The clinical presentation of FHM2 with mutations in the same gene varies from pure FHM to severe forms with epilepsy and intellectual disability, but the correlation of these symptoms with different ATP1A2 mutations is still unclear. Methods Ten ATP1A2 missense mutations were selected according to different phenotypes of FHM patients. They caused pure FHM (FHM: R65W, R202Q, R593W, G762S), FHM with epilepsy (FHME: R548C, E825K, R938P), or FHM with epilepsy and intellectual disability (FHMEI: T378N, G615R, D718N). After ouabain resistance and fluorescence modification, plasmids carrying those mutations were transiently transfected into HEK293T and HeLa cells. The biochemical functions were studied including cell survival assays, membrane protein extraction, western blotting, and Na+/K+-ATPase activity tests. The electrophysiological functions of G762S, R938P, and G615R mutations were investigated in HEK293T cells using whole-cell patch-clamp. Homology modeling was performed to determine the locational distribution of ATP1A2 mutations. Results Compared with wild-type pumps, all mutations showed a similar level of protein expression and decreased cell viability in the presence of 1 µM ouabain, and there was no significant difference among the mutant groups. The changes in Na+/K+-ATPase activity were correlated with the severity of FHM phenotypes. In the presence of 100 µM ouabain, the Na+/K+-ATPase activity was FHM > FHME > FHMEI. The ouabain-sensitive Na+/K+-ATPase activity of each mutant was significantly lower than that of the wild-type protein, and there was no significant difference among all mutant groups. Whole-cell voltage-clamp recordings in HEK293T cells showed that the ouabain-sensitive pump currents of G615R were significantly reduced, while those of G762S and R938P were comparable to those of the wild-type strain. Conclusions ATP1A2 mutations cause phenotypes ranging from pure FHM to FHM with epilepsy and intellectual disability due to varying degrees of deficits in biochemical and electrophysiological properties of Na+/K+-ATPase. Mutations associated with intellectual disability presented with severe impairment of Na+/K+-ATPase. Whether epilepsy is accompanied, or the type of epilepsy did not seem to affect the degree of impairment of pump function.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Springer Science and Business Media LLC

Subject

Anesthesiology and Pain Medicine,Clinical Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3