Synaptic alterations in visual cortex reshape contrast-dependent gamma oscillations and inhibition-excitation ratio in a genetic mouse model of migraine

Author:

Meneghetti Nicolò,Cerri Chiara,Vannini Eleonora,Tantillo Elena,Tottene Angelita,Pietrobon Daniela,Caleo Matteo,Mazzoni Alberto

Abstract

Abstract Background Migraine affects a significant fraction of the world population, yet its etiology is not completely understood. In vitro results highlighted thalamocortical and intra-cortical glutamatergic synaptic gain-of-function associated with a monogenic form of migraine (familial-hemiplegic-migraine-type-1: FHM1). However, how these alterations reverberate on cortical activity remains unclear. As altered responsivity to visual stimuli and abnormal processing of visual sensory information are common hallmarks of migraine, herein we investigated the effects of FHM1-driven synaptic alterations in the visual cortex of awake mice. Methods We recorded extracellular field potentials from the primary visual cortex (V1) of head-fixed awake FHM1 knock-in (n = 12) and wild type (n = 12) mice in response to square-wave gratings with different visual contrasts. Additionally, we reproduced in silico the obtained experimental results with a novel spiking neurons network model of mouse V1, by implementing in the model both the synaptic alterations characterizing the FHM1 genetic mouse model adopted. Results FHM1 mice displayed similar amplitude but slower temporal evolution of visual evoked potentials. Visual contrast stimuli induced a lower increase of multi-unit activity in FHM1 mice, while the amount of information content about contrast level remained, however, similar to WT. Spectral analysis of the local field potentials revealed an increase in the β/low γ range of WT mice following the abrupt reversal of contrast gratings. Such frequency range transitioned to the high γ range in FHM1 mice. Despite this change in the encoding channel, these oscillations preserved the amount of information conveyed about visual contrast. The computational model showed how these network effects may arise from a combination of changes in thalamocortical and intra-cortical synaptic transmission, with the former inducing a lower cortical activity and the latter inducing the higher frequencies ɣ oscillations. Conclusions Contrast-driven ɣ modulation in V1 activity occurs at a much higher frequency in FHM1. This is likely to play a role in the altered processing of visual information. Computational studies suggest that this shift is specifically due to enhanced cortical excitatory transmission. Our network model can help to shed light on the relationship between cellular and network levels of migraine neural alterations. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Anesthesiology and Pain Medicine,Neurology (clinical),General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3