Comprehensive anatomic ontologies for lung development: A comparison of alveolar formation and maturation within mouse and human lung

Author:

Pan Huaqin, ,Deutsch Gail H.,Wert Susan E.ORCID,

Abstract

Abstract Background Although the mouse is widely used to model human lung development, function, and disease, our understanding of the molecular mechanisms involved in alveolarization of the peripheral lung is incomplete. Recently, the Molecular Atlas of Lung Development Program (LungMAP) was funded by the National Heart, Lung, and Blood Institute to develop an integrated open access database (known as BREATH) to characterize the molecular and cellular anatomy of the developing lung. To support this effort, we designed detailed anatomic and cellular ontologies describing alveolar formation and maturation in both mouse and human lung. Description While the general anatomic organization of the lung is similar for these two species, there are significant variations in the lung’s architectural organization, distribution of connective tissue, and cellular composition along the respiratory tract. Anatomic ontologies for both species were constructed as partonomic hierarchies and organized along the lung’s proximal-distal axis into respiratory, vascular, neural, and immunologic components. Terms for developmental and adult lung structures, tissues, and cells were included, providing comprehensive ontologies for application at varying levels of resolution. Using established scientific resources, multiple rounds of comparison were performed to identify common, analogous, and unique terms that describe the lungs of these two species. Existing biological and biomedical ontologies were examined and cross-referenced to facilitate integration at a later time, while additional terms were drawn from the scientific literature as needed. This comparative approach eliminated redundancy and inconsistent terminology, enabling us to differentiate true anatomic variations between mouse and human lungs. As a result, approximately 300 terms for fetal and postnatal lung structures, tissues, and cells were identified for each species. Conclusion These ontologies standardize and expand current terminology for fetal and adult lungs, providing a qualitative framework for data annotation, retrieval, and integration across a wide variety of datasets in the BREATH database. To our knowledge, these are the first ontologies designed to include terminology specific for developmental structures in the lung, as well as to compare common anatomic features and variations between mouse and human lungs. These ontologies provide a unique resource for the LungMAP, as well as for the broader scientific community.

Funder

National Heart, Lung, and Blood Institute

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Health Informatics,Computer Science Applications,Information Systems

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3