Annotation of epilepsy clinic letters for natural language processing

Author:

Fonferko-Shadrach Beata,Strafford Huw,Jones Carys,Khan Russell A.,Brown Sharon,Edwards Jenny,Hawken Jonathan,Shrimpton Luke E.,White Catharine P.,Powell Robert,Sawhney Inder M. S.,Pickrell William O.,Lacey Arron S.

Abstract

Abstract Background Natural language processing (NLP) is increasingly being used to extract structured information from unstructured text to assist clinical decision-making and aid healthcare research. The availability of expert-annotated documents for the development and validation of NLP applications is limited. We created synthetic clinical documents to address this, and to validate the Extraction of Epilepsy Clinical Text version 2 (ExECTv2) NLP pipeline. Methods We created 200 synthetic clinic letters based on hospital outpatient consultations with epilepsy specialists. The letters were double annotated by trained clinicians and researchers according to agreed guidelines. We used the annotation tool, Markup, with an epilepsy concept list based on the Unified Medical Language System ontology. All annotations were reviewed, and a gold standard set of annotations was agreed and used to validate the performance of ExECTv2. Results The overall inter-annotator agreement (IAA) between the two sets of annotations produced a per item F1 score of 0.73. Validating ExECTv2 using the gold standard gave an overall F1 score of 0.87 per item, and 0.90 per letter. Conclusion The synthetic letters, annotations, and annotation guidelines have been made freely available. To our knowledge, this is the first publicly available set of annotated epilepsy clinic letters and guidelines that can be used for NLP researchers with minimum epilepsy knowledge. The IAA results show that clinical text annotation tasks are difficult and require a gold standard to be arranged by researcher consensus. The results for ExECTv2, our automated epilepsy NLP pipeline, extracted detailed epilepsy information from unstructured epilepsy letters with more accuracy than human annotators, further confirming the utility of NLP for clinical and research applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3