Improving reusability along the data life cycle: a regulatory circuits case study

Author:

Louarn Marine,Chatonnet Fabrice,Garnier Xavier,Fest Thierry,Siegel Anne,Faron Catherine,Dameron OlivierORCID

Abstract

Abstract Background In life sciences, there has been a long-standing effort of standardization and integration of reference datasets and databases. Despite these efforts, many studies data are provided using specific and non-standard formats. This hampers the capacity to reuse the studies data in other pipelines, the capacity to reuse the pipelines results in other studies, and the capacity to enrich the data with additional information. The Regulatory Circuits project is one of the largest efforts for integrating human cell genomics data to predict tissue-specific transcription factor-genes interaction networks. In spite of its success, it exhibits the usual shortcomings limiting its update, its reuse (as a whole or partially), and its extension with new data samples. To address these limitations, the resource has previously been integrated in an RDF triplestore so that TF-gene interaction networks could be generated with two SPARQL queries. However, this triplestore did not store the computed networks and did not integrate metadata about tissues and samples, therefore limiting the reuse of this dataset. In particular, it does not enable to reuse only a portion of Regulatory Circuits if a study focuses on a subset of the tissues, nor to combine the samples described in the datasets with samples from other studies. Overall, these limitations advocate for the design of a complete, flexible and reusable representation of the Regulatory Circuits dataset based on Semantic Web technologies. Results We provide a modular RDF representation of the Regulatory Circuits, called Linked Extended Regulatory Circuits (LERC). It consists in (i) descriptions of biological and experimental context mapped to the references databases, (ii) annotations about TF-gene interactions at the sample level for 808 samples, (iii) annotations about TF-gene interactions at the tissue level for 394 tissues, (iv) metadata connecting the knowledge graphs cited above. LERC is based on a modular organisation into 1,205 RDF named graphs for representing the biological data, the sample-specific and the tissue-specific networks, and the corresponding metadata. In total it contains 3,910,794,050 triples and is available as a SPARQL endpoint. Conclusion The flexible and modular architecture of LERC supports biologically-relevant SPARQL queries. It allows an easy and fast querying of the resources related to the initial Regulatory Circuits datasets and facilitates its reuse in other studies. Associated website https://regulatorycircuits-lod.genouest.org

Funder

inserm-inria

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Health Informatics,Computer Science Applications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3