We are not ready yet: limitations of state-of-the-art disease named entity recognizers

Author:

Kühnel LisaORCID,Fluck Juliane

Abstract

Abstract Background Intense research has been done in the area of biomedical natural language processing. Since the breakthrough of transfer learning-based methods, BERT models are used in a variety of biomedical and clinical applications. For the available data sets, these models show excellent results - partly exceeding the inter-annotator agreements. However, biomedical named entity recognition applied on COVID-19 preprints shows a performance drop compared to the results on test data. The question arises how well trained models are able to predict on completely new data, i.e. to generalize. Results Based on the example of disease named entity recognition, we investigate the robustness of different machine learning-based methods - thereof transfer learning - and show that current state-of-the-art methods work well for a given training and the corresponding test set but experience a significant lack of generalization when applying to new data. Conclusions We argue that there is a need for larger annotated data sets for training and testing. Therefore, we foresee the curation of further data sets and, moreover, the investigation of continual learning processes for machine learning-based models.

Funder

Deutsche Zentralbibliothek für Medizin (ZBMED)

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Health Informatics,Computer Science Applications,Information Systems

Reference30 articles.

1. School HM. N2C2: National NLP Clinical Challenges. https://n2c2.dbmi.hms.harvard.edu/. Accessed 20 June 2021.

2. Doğan RI, Leaman R, Lu Z. The NCBI Disease Corpus. https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/. Accessed 11 July 2021.

3. Li J, Sun Y, Johnson RJ, Sciaky D, Wei C-H, Leaman R, Davis AP, Mattingly CJ, Wiegers TC, Lu Z. BioCreative v CDR task corpus: a resource for chemical disease relation extraction. 2016. https://doi.org/10.1093/database/baw068. Accessed 11 July 2021.

4. The NCBI Disease Corpus Guidelines. https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/Guidelines.html. Accessed 12 July 2021.

5. The BC5CDR Corpus Guidelines. https://biocreative.bioinformatics.udel.edu/media/store/files/2015/bc5_CDR_data_guidelines.pdf. Accessed 12 July 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3