Synthetic data for annotation and extraction of family history information from clinical text

Author:

Brekke Pål H.,Rama TarakaORCID,Pilán Ildikó,Nytrø Øystein,Øvrelid Lilja

Abstract

Abstract Background The limited availability of clinical texts for Natural Language Processing purposes is hindering the progress of the field. This article investigates the use of synthetic data for the annotation and automated extraction of family history information from Norwegian clinical text. We make use of incrementally developed synthetic clinical text describing patients’ family history relating to cases of cardiac disease and present a general methodology which integrates the synthetically produced clinical statements and annotation guideline development. The resulting synthetic corpus contains 477 sentences and 6030 tokens. In this work we experimentally assess the validity and applicability of the annotated synthetic corpus using machine learning techniques and furthermore evaluate the system trained on synthetic text on a corpus of real clinical text, consisting of de-identified records for patients with genetic heart disease. Results For entity recognition, an SVM trained on synthetic data had class weighted precision, recall and F1-scores of 0.83, 0.81 and 0.82, respectively. For relation extraction precision, recall and F1-scores were 0.74, 0.75 and 0.74. Conclusions A system for extraction of family history information developed on synthetic data generalizes well to real, clinical notes with a small loss of accuracy. The methodology outlined in this paper may be useful in other situations where limited availability of clinical text hinders NLP tasks. Both the annotation guidelines and the annotated synthetic corpus are made freely available and as such constitutes the first publicly available resource of Norwegian clinical text.

Funder

Norges forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Health Informatics,Computer Science Applications,Information Systems

Reference33 articles.

1. Uzuner O, Stubbs A. Practical applications for natural language processing in clinical research: The 2014 i2b2/uthealth shared tasks. J Biomed Inform. 2015; 58(Suppl):1.

2. Roberts A, Gaizauskas R, Hepple M, Demetriou G, Guo Y, Setzer A, Roberts I. Semantic annotation of clinical text: The clef corpus. In: Proceedings of the LREC 2008 Workshop on Building and Evaluating Resources for Biomedical Text Mining. Marrakech: European Language Resources Association (ELRA): 2008. p. 19–26.

3. Dalianis H, Hassel M, Henriksson A, Skeppstedt M. Stockholm EPR Corpus: A Clinical Database Used to Improve Health Care. In: Proceedings of the Fourth Swedish Language Technology Conference: 2012. p. 17–8.

4. Névéol A, Dalianis H, Velupillai S, Savova G, Zweigenbaum P. Clinical natural language processing in languages other than English: opportunities and challenges. J Biotechnol Semant. 2018; 9(1):1–13.

5. Velupillai S, Suominen H, Liakata M, Roberts A, Shah A, Morley K, Osborn D, Hayes J, Stewart R, Downs J, Chapman W, Dutta R. Using clinical natural language processing for health outcomes research: Overview and actionable suggestions for future advances. J Biomed Inform. 2018. https://doi.org/10.1016/j.jbi.2018.10.005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3