Abstract
Abstract
Background
Knowledge graphs can represent the contents of biomedical literature and databases as subject-predicate-object triples, thereby enabling comprehensive analyses that identify e.g. relationships between diseases. Some diseases are often diagnosed in patients in specific temporal sequences, which are referred to as disease trajectories. Here, we determine whether a sequence of two diseases forms a trajectory by leveraging the predicate information from paths between (disease) proteins in a knowledge graph. Furthermore, we determine the added value of directional information of predicates for this task. To do so, we create four feature sets, based on two methods for representing indirect paths, and both with and without directional information of predicates (i.e., which protein is considered subject and which object). The added value of the directional information of predicates is quantified by comparing the classification performance of the feature sets that include or exclude it.
Results
Our method achieved a maximum area under the ROC curve of 89.8% and 74.5% when evaluated with two different reference sets. Use of directional information of predicates significantly improved performance by 6.5 and 2.0 percentage points respectively.
Conclusions
Our work demonstrates that predicates between proteins can be used to identify disease trajectories. Using the directional information of predicates significantly improved performance over not using this information.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Health Informatics,Computer Science Applications,Information Systems
Reference60 articles.
1. Antezana E, Kuiper M, Mironov V. Biological knowledge management: the emerging role of the semantic web technologies. Brief Bioinform. 2009;10:392–407.
2. Manola F, Miller E. W3C.org Triple specification. W3C.org. 2004 [cited 2018 Jun 4]. Available from: https://www.w3.org/TR/rdf-concepts/#dfn-rdf-triple.
3. Chen H, Ding L, Wu Z, Yu T, Dhanapalan L, Chen JY. Semantic web for integrated network analysis in biomedicine. Brief Bioinform. 2009;10:177–92.
4. Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z. A survey of current trends in computational drug repositioning. Brief Bioinform. 2016;17:2–12.
5. Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL, Hadley D, et al. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife. 2017;6:1–35.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献