Exploring semantic deep learning for building reliable and reusable one health knowledge from PubMed systematic reviews and veterinary clinical notes

Author:

Arguello-Casteleiro Mercedes,Stevens Robert,Des-Diz Julio,Wroe Chris,Fernandez-Prieto Maria Jesus,Maroto Nava,Maseda-Fernandez Diego,Demetriou George,Peters Simon,Noble Peter-John M.,Jones Phil H.,Dukes-McEwan Jo,Radford Alan D.,Keane John,Nenadic Goran

Abstract

Abstract Background Deep Learning opens up opportunities for routinely scanning large bodies of biomedical literature and clinical narratives to represent the meaning of biomedical and clinical terms. However, the validation and integration of this knowledge on a scale requires cross checking with ground truths (i.e. evidence-based resources) that are unavailable in an actionable or computable form. In this paper we explore how to turn information about diagnoses, prognoses, therapies and other clinical concepts into computable knowledge using free-text data about human and animal health. We used a Semantic Deep Learning approach that combines the Semantic Web technologies and Deep Learning to acquire and validate knowledge about 11 well-known medical conditions mined from two sets of unstructured free-text data: 300 K PubMed Systematic Review articles (the PMSB dataset) and 2.5 M veterinary clinical notes (the VetCN dataset). For each target condition we obtained 20 related clinical concepts using two deep learning methods applied separately on the two datasets, resulting in 880 term pairs (target term, candidate term). Each concept, represented by an n-gram, is mapped to UMLS using MetaMap; we also developed a bespoke method for mapping short forms (e.g. abbreviations and acronyms). Existing ontologies were used to formally represent associations. We also create ontological modules and illustrate how the extracted knowledge can be queried. The evaluation was performed using the content within BMJ Best Practice. Results MetaMap achieves an F measure of 88% (precision 85%, recall 91%) when applied directly to the total of 613 unique candidate terms for the 880 term pairs. When the processing of short forms is included, MetaMap achieves an F measure of 94% (precision 92%, recall 96%). Validation of the term pairs with BMJ Best Practice yields precision between 98 and 99%. Conclusions The Semantic Deep Learning approach can transform neural embeddings built from unstructured free-text data into reliable and reusable One Health knowledge using ontologies and content from BMJ Best Practice.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Health Informatics,Computer Science Applications,Information Systems

Reference113 articles.

1. WHO: One Health. September 2017. http://www.who.int/features/qa/one-health/en/.

2. Kahn LH. Perspective: the one-health way. Nature. 2017;543(7647):S47.

3. Stroud, C., Dmitriev, I., Kashentseva, E., Bryan, J.N., Curiel, D.T., Rindt, H., Reinero, C., Henry, C.J., Bergman, P.J., Mason, N.J. and Gnanandarajah, J.S., 2016, August. A One Health overview, facilitating advances in comparative medicine and translational research. In Clinical and translational medicine (Vol. 5, No. 1, p. 26). Springer Berlin Heidelberg.

4. Semantic Deep Learning. http://semdeep.iiia.csic.es.

5. Semantic Deep Learning. http://www.semantic-web-journal.net/blog/call-papers-special-issue-semantic-deep-learning. Accessed 25th April 2019.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. One Digital Health for more FAIRness;Methods of Information in Medicine;2022-09-07

2. Machine and cognitive intelligence for human health: systematic review;Brain Informatics;2022-02-12

3. Machine Learning and Life Sciences;Machine Learning in Biological Sciences;2022

4. Using topic modelling for unsupervised annotation of electronic health records to identify an outbreak of disease in UK dogs;PLOS ONE;2021-12-09

5. Upwardly Abstracted Definition-Based Subontologies;Proceedings of the 11th on Knowledge Capture Conference;2021-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3