Design, synthesis, docking studies and antibiotic evaluation (in vitro) of some novel (E)-4-(3-(diphenylamino)phenyl)-1-(4-methoxyphenyl)-2-methylbut-3-en-1-one and their analogues

Author:

Tukur AbdulRazaqORCID,Habila James Dama,Ayo Rachael Gbekele-Oluwa,Iyun Ogunkemi Risikat Agbeke

Abstract

Abstract Background Antibiotic resistance has risen as a result of a variety of conditions, prompting researchers to look for new compounds that can combat multidrug-resistant organisms. Over the last two decades, chalcones have been proved to be attractive moieties in drug discovery. Various substituted acetophenones, propiophenones and 4-(Diphenylamino) benzaldehyde were combined, using the Aldol condensation reaction to obtain eight novel triphenylamine chalcones. The compound’s antimicrobial properties were investigated (in vitro). With the non-mutant X-ray Human cytochrome P450 21A2 Hydroxyprogesterone retrieved from Protein Data Bank (PDB: 5VBU), molecular docking experiments were also carried out to analyse the most favourable conformation and find the orientation that maximizes interaction and minimize energy. Results Eight novel triphenylamine chalcones were successfully synthesized and recrystallized using ethanol, the percentage yield of the compounds were between 30 and 92%. The activity against different pathogens revealed that, all synthesized compounds showed marked antimicrobial activity against the tested microorganisms. (E)-3-(4-(diphenylamino)phenyl)-1-(3′-nitrophenyl)prop-2-en-1-one (1b) showed the highest zone of inhibition against Aspergillus niger, measuring 30 mm. The minimum inhibitory concentration (MIC) results revealed that (E)-1-(4′-bromophenyl)-3-(4-(diphenylamino)phenyl)prop-2-en-1-one (1a), (E)-3-(4-(diphenylamino)phenyl)-1-(3′-nitrophenyl)prop-2-en-1-one (1b), (E)-1-(4′-chlorophenyl)-3-(4-diphenylamino)phenyl)prop-2-en-1-one (1c), (E)-3-(4-diphenylamino)phenyl)-1-(4′-fluorophenyl)prop-2-en-1-one (1d) and (E)-4-(3-(diphenylamino)phenyl)-1-(4-fluorophenyl)-2-methylbut-3-en-1-one (2d) had the lowest MIC and inhibit Aspergillus niger growth at 12.5 µg/ml. All the synthesized compounds showed minimum bactericidal concentration and minimum fungicidal concentration (MBC/MFC) effect against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Candida albicans and Aspergillus niger at 50 µg/ml. The docking studies of the synthesized chalcones with the binding site of the Human cytochrome P450 21A2 Hydroxyprogesterone (PDB: 5VBU) reveal that the binding affinity of the synthesized chalcones was in the range of − 11.2 to − 9.4 kcal/mol and showed highest binding score compared to that of the standard drugs (Fluconazole and Ciproflaxacin), with docking scores of − 7.9 and − 7.3 kcal/mol, respectively. Conclusions The investigation reveals that compound 1b showed the highest ZOI of 30 mm, least MIC and MBC/MFC of 12.5 and 50 µg/ml against Aspergillus niger, respectively. Therefore, displayed better antifungal potential as compared to the rest of the compounds. The outcome of the docking analysis revealed that (E)-4-(3-(diphenylamino)phenyl)-1-(4′-hydroxyphenyl)-2-methylbut-3-en-1-one (2a) showed a better binding affinity of -11.2 kcal/mol, which is higher than the remaining compounds and the control drugs (fluconazole and ciproflaxacin).

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3