Maximizing the cost effectiveness of electric power generation through the integration of distributed generators: wind, hydro and solar power

Author:

Idoko Idoko Peter,Ayodele Temitope Raphael,Abolarin Sogo Mayokun,Ewim Daniel Raphael Ejike

Abstract

Abstract Background The transition towards renewable energy sources has become an imperative step to mitigate climate change, reduce carbon emissions and improve energy security and economic prosperity in a sustainable manner. Maximizing the cost effectiveness of electric power generation is crucial to making renewable energy sources viable and attractive options for clean energy production. The strategic allocation of wind, hydro and solar power systems is essential to achieving this goal. This paper attempts to demonstrate how the cost effectiveness of electrical power system could be maximized through the integration of wind, solar and hydropower systems and comparison at different penetration levels of 0, 25, 50, 75 and 100% on cost effectiveness of electric power generation. The different generator technologies were designed based on their electrical output attributions. Results The cost of electric generation for the integration of each generator at the various buses were calculated at different penetration level for fair comparison. The results indicate that the minimum money loss for the integration of solar power was $743.90 at bus 4 and at 50% penetration level, the minimum money loss for the integration of wind power was $999.00 at bus 4 and at 25% penetration level while the minimum amount loss for the integration of hydropower was $546.50 at bus 4 and at 75% penetration level. Conclusions The magnitude to which the integration of the different generator affects the cost effectiveness of power production hinges on the type of generator, the penetration level and the location of the generator in the grid.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3