Abstract
Abstract
Background
Selection indices help the plant breeders to discriminate desirable genotypes on the basis of phenotypic performance. Therefore, the present study was conducted to evaluate thirty sugarcane genotypes (clones) along with two check cultivars in two cropping seasons at Mattana Agricultural Research Station.
Results
The results showed the studied traits observed in all genotypes were significantly different. The results could significantly discriminate between low and high sugar yield genotypes by describing eleven traits including sugar yield (ton/fed), cane yield (ton/fed), number of stalk/m2, stalk weight (kg), stalk height (cm), stalk diameter (cm), number of internodes, Brix %, sucrose %, purity %, and sugar recovery %. High sugar yield genotypes were selected by discriminant analysis. The discriminant score (DS) could explain 79.2% of sugar yield variations and had a significant canonical correlation (0.89**). Results of discriminant function analysis (DFA) indicated that the most important traits, in order of appearance, are stalk weight, stalk height, purity %, Brix%, and cane yields.
Conclusions
Genotypes, G.2017-43, G.2017-42, G.2017-29, G.2017-33, and G.2017-44, showed the highest values of the discriminant score and were recognized as the highest yielder sugarcane genotypes. While the genotypes named Vis, G.2017-30, G.2017-10, G.2017-27, G.2017-25, G.2017-70, G.2017-41, G.2017-40, G.2017-35, and G.2017-58, recognized as the lowest yielder sugarcane genotypes which represent the lowest values of the discriminant score.
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Abdolshahi R, Nazari M, Safarian A, Sadathossini T, Salarpour M, Amiri H (2015) Integrated selection criteria for drought tolerance in wheat (Triticum aestivum L.) breeding programs using discriminant analysis. Field Crops Res 174:20–29
2. Abu-Ellail FFB, Abd El-Azez YM, Bassiony NA (2019) Assessment of ratooning ability and genetic variability of promising sugarcane varieties under middle Egypt conditions. Electronic J. Plant Breed. 10(1):143–154
3. Abu-Ellail FFB, Masri MI, El-Taib ABA (2018) Performance of some new sugarcane clones for yield and its components at two different crop cycles. Indian J. Sugarcane Technol. 33(1):27–34
4. Ahmed AO, Obeid A (2012) Investigation on variability, broad sensed heritability and genetic advance in sugarcane (Saccharum spp). International J. Agri. Sci. 2(9):839–844
5. Ahmet OZ (2012) Use of discriminant analysis for selection of hybrid maize parent lines. Turk. J. Agric. 36:533–542