Theoretical activity prediction, structure-based design, molecular docking and pharmacokinetic studies of some maleimides against Leishmania donovani for the treatment of leishmaniasis

Author:

Ugbe Fabian AuduORCID,Shallangwa Gideon Adamu,Uzairu Adamu,Abdulkadir Ibrahim

Abstract

Abstract Background Leishmaniasis is a neglected tropical disease caused by a group of protozoan of the genus Leishmania and transmitted to humans majorly through the bite of the female sand fly. It is prevalent in the tropical regions of the world especially in Africa and estimated to affect a population of about 12 million people annually. This theoretical study was therefore conducted in support of the search for more effective drug candidates for the treatment of leishmaniasis. This study focuses on the in silico activity prediction of twenty-eight (28) maleimides, structure-based design, molecular docking study and pharmacokinetics analysis of the newly designed maleimides. All the studied compounds were drawn using ChemDraw Ultra and optimized by the density functional theory (DFT) approach using B3LYP with 6-31G⁄ basis set. Results The built QSAR model was found to satisfy the requirement of both internal and external validation tests for an acceptable QSAR model with R2 = 0.801, R2adj = 0.748, Q2cv = 0.710, R2test = 0.892 and cRp2 = 0.664 and has shown excellent prediction of the studied compounds. Among the five (5) protein receptors utilized for the virtual docking screening, pyridoxal kinase (PdxK) receptor (Pdb id = 6k91) showed the strongest binding interactions with compounds 14, 21 and 24 with the highest binding affinities of − 7.7, − 7.7 and − 7.8 kcal/mol, respectively. The selected templates (14, 21 and 24) were used to design twelve (12) new compounds (N1–N12) with higher docking scores than the templates. N7 (affinity =  − 8.9 kcal/mol) and N12 (− 8.5 kcal/mol) showed higher binding scores than the reference drug pentamidine (− 8.10 kcal/mol), while N3 and N7N12 showed higher predicted pIC50 than the templates. Also, the pharmacokinetics properties prediction revealed that the newly designed compounds, obeyed the Lipinski’s rule for oral bio-availability, showed high human intestinal absorption (HIA), low synthetic accessibility score, CNS and BBB permeability and were pharmacologically active. Conclusions The activities of the various maleimides were predicted excellently by the built QSAR model. Based on the pharmacokinetics and molecular docking studies therefore, the newly designed compounds are suggested for further practical evaluation and/or validation as potential drug candidates for the treatment of leishmaniasis.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference45 articles.

1. Abdelhameed A (2018) The design and synthesis of cyanines and arylimidamide azole hybrids as antilesihmanaial agents, PhD dissertation The Ohio State University. https://gradsch.osu.edu/calendar/events/design-and-synthesis-cyanines-and-arylimidamide-azole-hybrids-antileishmanial-agents. Accessed 11 Feb 2022

2. Abdullahi A, Shallangwa GA, Ibrahim MT, Bello AU, Arthur DE, Uzairu A, Mamza P (2019) QSAR studies on some C14-urea tetrandrine compounds as potent anti-cancer agents against Leukemia cell line (K562). JOTCSA 5(3):1391–1402

3. Abdullahi SA, Uzairu A, Shallangwa GA, Uba S, Umar AB (2022) In-silico activity prediction, structure-based drug design, molecular docking and pharmacokinetic studies of selected quinazoline derivatives for their antiproliferative activity against triple negative breast cancer (MDA-MB231) cell line. Bull Nat Res Centre 46:2

4. Adawara SN, Shallangwa GA, Mamza PA, Ibrahim A (2020) Molecular docking and QSAR theoretical model for prediction of phthalazinone derivatives as new class of potent dengue virus inhibitors. Beni-Suef Univ J Basic Appl Sci 9(50)

5. Adeniji SE, Uba S, Uzairu A (2018) QSAR modeling and molecular docking analysis of some active compounds against mycobacterium tuberculosis receptor (Mtb CYP121). J Pathogens Hindawi 2018:24–64

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3