Modeling nanofluid viscosity: comparing models and optimizing feature selection—a novel approach

Author:

Onyiriuka EkeneORCID

Abstract

Abstract Background The accurate prediction of viscosity in nanofluids is essential for comprehending their flow behavior and enhancing their effectiveness in different industries. This research delves into modeling the viscosity of nanofluids and assessing various models through cross-validation techniques. The models are compared based on the root mean square error of the cross-validation sets, which served as the selection criteria. The main body of the abstract Four feature selection algorithms namely the minimum redundancy maximum relevance, F-test, RReliefF were evaluated to identify the most influential features for viscosity prediction. The feature selection based on physical meaning was the algorithm that yielded the best results, as outlined in this study. This methodology takes into account the physical relevance of most aspects of the nanofluid's viscosity. To assess the predictive performance of the models, a cross-validation process was conducted, which provided a robust evaluation. The root mean squared error of the validation sets was used to compare the models. This rigorous evaluation identified the most accurate and reliable model for predicting nanofluid viscosity. Results The results showed that the novel feature selection algorithm outclassed the established approaches in predicting the viscosity of single material nanofluid. The proposed feature selection algorithm had a root mean squared error of 0.022 and an r squared value of 0.9941 for the validation set, while for the test set, the root mean squared error was 0.0146, the mean squared error was 0.0157, the r squared value was 0.9924. Conclusions This research provides valuable insights into nanofluid viscosity and offers guidance on choosing the most suitable features for viscosity modeling. The study also highlights the importance of using physical meaning to select features and cross-validation to assess model performance. The models developed in this study can be helpful in predicting nanofluid viscosity and optimizing their use in different industrial processes.

Funder

Tertiary Education Trust Fund

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimising Al2O3–water nanofluid;Bulletin of the National Research Centre;2024-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3