Abstract
AbstractBackgroundIn the pre-menopausal ovary, the oocyte does not develop in isolation. Stroma, perivascular cells, immune cells, granulosa cells and endothelium are unequivocally active, and compelling evidence are also available placing germline stem cells within this milieu. Indeed, the local cytoarchitecture network of collagen, proteoglycans, polysaccharides, and fibrous proteins jointly influence endocrine, nutrient, and osmotic fluid movement vital to eggs. After transiting basal lamina, these moieties can directly determine follicular growth and oocyte metabolism.Main body of the abstractOver time, this support apparatus changes to dampen crucial biochemical inputs and eventually disconnects the oocyte from its own regulatory grid. Background factors extrinsic to the oocyte such as stroma and extracellular matrix thus contribute to overall reproductive fitness. Both menopause and infertility are thus distinct clinical manifestations of a common knock-down of ovarian competence. While treatments for symptomatic menopause and infertility traditionally depend on standard hormone replacement therapy or synthetic gonadotropins, autologous platelet rich plasma (PRP) has arrived as an alternative method to improve ovarian reserve.Short conclusionIntraovarian PRP is usually considered to interact mainly with follicles or oocyte precursors, although other ovarian components also respond to platelet cytokines. Cross-discipline PRP effects measured in similar (non-reproductive) stroma and tissue matrix systems are examined here, with a view to promote greater research bandwidth for intraovarian PRP.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Geography, Planning and Development