Discussion of field effects after intraovarian injection of autologous platelet-rich plasma

Author:

Sills E. ScottORCID,Wood Samuel H.

Abstract

AbstractBackgroundIn the pre-menopausal ovary, the oocyte does not develop in isolation. Stroma, perivascular cells, immune cells, granulosa cells and endothelium are unequivocally active, and compelling evidence are also available placing germline stem cells within this milieu. Indeed, the local cytoarchitecture network of collagen, proteoglycans, polysaccharides, and fibrous proteins jointly influence endocrine, nutrient, and osmotic fluid movement vital to eggs. After transiting basal lamina, these moieties can directly determine follicular growth and oocyte metabolism.Main body of the abstractOver time, this support apparatus changes to dampen crucial biochemical inputs and eventually disconnects the oocyte from its own regulatory grid. Background factors extrinsic to the oocyte such as stroma and extracellular matrix thus contribute to overall reproductive fitness. Both menopause and infertility are thus distinct clinical manifestations of a common knock-down of ovarian competence. While treatments for symptomatic menopause and infertility traditionally depend on standard hormone replacement therapy or synthetic gonadotropins, autologous platelet rich plasma (PRP) has arrived as an alternative method to improve ovarian reserve.Short conclusionIntraovarian PRP is usually considered to interact mainly with follicles or oocyte precursors, although other ovarian components also respond to platelet cytokines. Cross-discipline PRP effects measured in similar (non-reproductive) stroma and tissue matrix systems are examined here, with a view to promote greater research bandwidth for intraovarian PRP.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3