Abstract
Abstract
Background
This study focuses on Dhaka City and its impact on urban surface water. Cities, ecosystems, and agriculture need surface water. It is crucial for water resource planning and environmental preservation. The primary aim is to study how urbanization has affected surface water in Dhaka City over 30 years using satellite imagery.
Methods
The study analyzed three decades of urban surface water shifts using Landsat 5 TM and Landsat 8 OLI/TIRS satellite imagery and Google Earth Engine (GEE) with JavaScript code for water ratio index detection. To investigate water level changes, field observation surveys and secondary data analysis were conducted. This integrated methodology simplified surface water data extraction and analysis, making remote sensing easier and allowing cloud-based satellite data processing.
Results
The study demonstrates that the amount of surface water in cities is going down, from 36.23 km2 in 1990 to 5.83 km2 in 2021, which is an enormous decrease. This means that about 20 square kilometers, or 45 percent of the water's surface, have been lost in the last 30 years. The main reasons for the drop are unplanned expansion of cities, accelerated real estate development, and more trade and economic activities in the study area.
Conclusions
The GEE algorithms provide useful insights into surface water's maximum and minimum extent, enabling appropriate planning and management. These findings aid Dhaka City's water resource management and environmental protection.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Geography, Planning and Development
Reference27 articles.
1. Abbass K, Qasim MZ, Song H, Murshed M, Mahmood H, Younis I (2022) A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ Sci Pollut Res 29(28):42539–42559
2. Acharya TD, Subedi A, Huang H, Lee DH (2019) Application of water indices in surface water change detection using landsat imagery in Nepal. Sens Mater 31(5):1429
3. Ahsan A, Ahmed T, Uddin MA, Al-Sulttani AO, Shafiquzzaman M, Islam MR, Masria A (2023) Evaluation of water quality index (WQI) in and around Dhaka city using groundwater quality parameters. Water 15(14):2666
4. Amani M, Ghorbanian A, Ahmadi SA, Kakooei M, Moghimi A, Mirmazloumi SM, Brisco B (2020) Google earth engine cloud computing platform for remote sensing big data applications: a comprehensive review. IEEE J Sel Top Appl Earth Observ Remote Sens 13:5326–5350
5. Annala L, Eskelinen MA, Hämäläinen J, Riihinen A, Pölönen I (2018) Practical approach for hyperspectral image processing in python. Int Arch Photogramm Remote Sens Spatial Inf Sci 13:45–52
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献