Monitoring spatiotemporal changes of urban surface water based on satellite imagery and Google Earth Engine platform in Dhaka City from 1990 to 2021

Author:

Hossain Md. JakirORCID,Mahmud Md. Munir,Islam Sheikh Tawhidul

Abstract

Abstract Background This study focuses on Dhaka City and its impact on urban surface water. Cities, ecosystems, and agriculture need surface water. It is crucial for water resource planning and environmental preservation. The primary aim is to study how urbanization has affected surface water in Dhaka City over 30 years using satellite imagery. Methods The study analyzed three decades of urban surface water shifts using Landsat 5 TM and Landsat 8 OLI/TIRS satellite imagery and Google Earth Engine (GEE) with JavaScript code for water ratio index detection. To investigate water level changes, field observation surveys and secondary data analysis were conducted. This integrated methodology simplified surface water data extraction and analysis, making remote sensing easier and allowing cloud-based satellite data processing. Results The study demonstrates that the amount of surface water in cities is going down, from 36.23 km2 in 1990 to 5.83 km2 in 2021, which is an enormous decrease. This means that about 20 square kilometers, or 45 percent of the water's surface, have been lost in the last 30 years. The main reasons for the drop are unplanned expansion of cities, accelerated real estate development, and more trade and economic activities in the study area. Conclusions The GEE algorithms provide useful insights into surface water's maximum and minimum extent, enabling appropriate planning and management. These findings aid Dhaka City's water resource management and environmental protection.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3