Abstract
Abstract
Background
Barley is one of the most important cereal crops with considerable tolerance to various environmental stresses, which can maintain its productivity well in marginal croplands. The selection of stable and high-yielding barley genotypes and ideal discriminative locations is an important strategy for the development of new cultivars in tropical climates. Different statistical methods have been developed to dissect the genotype-by-environment interaction effect and investigate the stability of genotypes and select discriminative environments. The main objective of the present study was to identify high-yielding and stable barley genotypes and testing environments located in the tropical regions of Iran using 23 parametric and nonparametric stability statistics. In the present study, the grain yield stability in nineteen barley genotypes was investigated across five different locations over two consecutive years (2018–2020).
Results
The additive main effects multiplicative interaction (AMMI) analysis showed that environments (E), genotypes (G) and GE interaction effects were significant for grain yield. Using Spearman’s rank correlation analysis, a pattern map developed simultaneously for assessing relationships between grain yield and stability statistics and clustering of them, which allowed identifying two main groups based on their stability concepts. The biplot rendered using the weighted average of absolute scores (WAASB) and mean grain yield identified superior genotypes in terms of performance and stability. Among test environments, Darab, Gonbad and Zabol showed a high discriminating ability and played the highest contribution in creating GEI. Hence, these regions are suggested as discriminative sites in Iran for the selection of high-yielding and stable barley genotypes.
Conclusion
As a conclusion from this research, all stability statistics together identify G10 and G12 as the superior barley genotypes; these genotypes could be released as commercial cultivars in tropical regions of Iran.
Publisher
Springer Science and Business Media LLC
Reference45 articles.
1. Ahakpaz F, Abdi H, Neyestani E, Hesami A, Mohammadi B, Nader Mahmoudi K, Abedi-Asl G, Jazayeri Noshabadi MR, Ahakpaz F, Alipour H (2021) Genotype-by-environment interaction analysis for grain yield of barley genotypes under dryland conditions and the role of monthly rainfall. Agric Water Manag 245:10665
2. Ahmadi J, Vaezi B, Shaabani A, Khademi K, Fabriki-Ourang S, Pour-Aboughadareh A (2015) Non-parametric measures for yield stability in grass pea (Lathyrus sativus L.) advanced lines in semi warm regions. J Sci Tech 17:1825–1838
3. Becker HC, Leon J (1988) Stability analysis in plant breeding. Plant Breed 101:1–23
4. Bocianowski J, Tratwal A, Nowosad K (2021) Genotype by environment interaction for main winter triticale varieties characteristics at two levels of technology using additive main effects and multiplicative interaction model. Euphytica 217:26
5. Dyke GV, Lane PW, Jenkyn JF (1995) Sensitivity (stability) analysis of multiple variety trails, with special reference to data expressed as proportion or percentage. Expl Agric 31:75–87
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献