Computational evaluation of bioactive compounds from Vitis vinifera as a novel β-catenin inhibitor for cancer treatment

Author:

Adebesin Ayomide OluwadarasimiORCID,Ayodele Abigail OluwakemiORCID,Omotoso OlabodeORCID,Akinnusi Precious AyorindeORCID,Olubode Samuel OlawaleORCID

Abstract

Abstract Background β-catenin is an important unit of the Wnt/β-catenin signaling pathway, a conserved process involving several physiological activities, encompassing differentiation and cell proliferation, etc. The dysfunction or mutation in β-catenin causing the initiation and advancement of various neoplasm types, including colorectal cancer, breast cancer, etc., has been reported. Therefore, β-catenin is a therapeutic target. Hence, designing new inhibitors targeted against β-catenin will prevent cancerous cells’ involvement and eliminate the diseases. Studies showed that Vitis vinifera, a well-known grape species, contains different phytochemical substances, including aromatic acids, flavonoids, phenolic compounds, proanthocyanins, etc. V.vinifera exerts different anticancer properties such as apoptosis, cell proliferation, cell cycle arrest, and inhibition in cancerous cells. Structural bioinformatics methods, including molecular docking, molecular mechanics generalized Born surface area (MM/GBSA), absorption, distribution, metabolism, excretion studies (ADMET), and pharmacophore modeling approach, were used to determine the potential β-catenin inhibitors from V.vinifera bioactive compounds. Result Cis-astringin, rutin, caftaric acid, trans-caftaric acid, procyanidin B3, cis-Miyabenol C, and ampelopsin H are shown to be suitable inhibitors against β-catenin due to their binding affinity and interaction with the amino acids residues at the binding sites of β-catenin compared to Food and Drug Administration (FDA) approved drugs leucovorin Calcium and Xeloda prescribed to cure colorectal cancer. Conclusions This study suggests that V. vinifera could be a good plant source for compounds that might treat cancer by inhibiting the Wnt/β-catenin signaling pathway.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3