Use of termitarium soil as a viable source for biofertilizer and biocontrol

Author:

Adebajo Seun Owolabi,Akintokun Pius Olugbenga,Ezaka Emmanuel,Ojo Abidemi Esther,Olannye Donald Uzowulu,Ayodeji Oluwaseun Deborah

Abstract

Abstract Background Environmental deterioration arising from the misuse of pesticides and chemical fertilizers in agriculture has resulted in the pursuit of eco-friendly means of growing crop. Evidence has shown that biofertilizers and biocontrol can boost soil fertility and suppress soil pathogens without compromising the safety of the environment. Hence, the study investigated the use of termitarium soil as a viable source for biofertilizer and biocontrol. Results Twenty-seven soil samples were collected from nine different mound soil (household, farm and water bodies in a sterile sample bag). Aliquots of serially diluted samples were plated on nutrient agar, plate count agar, eosin methylene blue agar and MacConkey agar plates. Isolates were identified using standard microbiological techniques. Identified isolates were screened for plant growth-promoting properties using phosphate solubilization test, potassium solubilization test and indole acetic acid production test. Activities of the plant growth-promoting bacteria were carried out using antagonism by diffusible substance method and antagonistic activity of cell-free culture filtrate of bacterial isolates against Ralstonia solanacearum and Fusarium oxysporum. Two hundred bacterial isolates were recovered from the 27 soil samples. The most predominant isolate was Bacillus spp. Out of the 200 bacterial isolates, 57 were positive for phosphate solubilization test, potassium solubilization test and indole acetic acid production test. Out of the 57 isolates, six bacterial isolates had antagonistic activities against Fusarium oxysporum, while seven bacterial isolates antagonized Ralstonia solanacearum. Conclusion The result showed that termite mound soil contains some useful bacteria that are capable of solubilizing phosphate and potassium and producing indole acetic acid which are the plant growth-promoting potentials and as well suppressing plant soil pathogen.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3