Efficacy of soil solarization on black root rot disease and speculation on its leverage on nematodes and weeds of strawberry in Egypt

Author:

Abd-Elgawad Mahfouz M. M.ORCID,Elshahawy Ibrahim E.,Abd-El-Kareem Farid

Abstract

Abstract Background Strawberry (Fragaria ananassa Duch.) is an economically important crop in Egypt. Yet complex black root rot disease of strawberry caused by Fusarium solani, Rhizoctonia solani, and Pythium sp. can cause considerable yield losses. Therefore, this study aimed at evaluating different aspects of soil solarization against this disease. Such an evaluation would better be viewed in the context of other beneficial effects of soil solarization on nematodes and weeds. Materials/methods Growth agar disks, growth suspension, and resting stages of strawberry black root rot fungi were evaluated at different temperatures and exposure times using digital hot water bath. Cloth bags artificially infested with single fungal species were buried into the soil before soil solarization at soil depths of 1–10, 11–20, and 21–30 cm at three spots of each plot for each of the abovementioned fungi for 3, 6, or 9 weeks. The disease incidence and severity in solarized and un-solarized soil was compared with the application of the fungicide Actamyl. Effects of soil solarization on nematodes and weeds were also consulted. Results The lethal temperature to F. solani, Pythium sp., and R. solani was 58, 58, and 56 °C, respectively when exposure time was 1 min. Chlamydospores were killed at 62 °C while sclerotia were killed at 58 °C in hot water for 1 min. Maximum soil temperature in solarized soil was raised by 15, 14, and 12 °C at depths of 1–10, 11–20, and 21–30 cm as compared with non-solarized soil. Solarization for 3, 6, and 9 weeks significantly reduced the disease incidence and severity and increased the strawberry yield. Complete reduction in total count of all tested fungi was obtained after 9 weeks at all tested depths. A review of collective soil pest and pathogen control via solarization documented its beneficial application. Conclusion The study may exploit hot months in Egypt for soil solarization against the serious root rot disease either singly or in an integrated pest management program.

Funder

Science and Technology Development Fund

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference39 articles.

1. Abd-Elgawad MMM (2019) Plant-parasitic nematodes of strawberry in Egypt: a review. Bull. NRC 43:7. https://doi.org/10.1186/s42269-019-0049-2

2. Abd-El-Kareem F, Elshahawy IE, Abd-Elgawad MMM (2019) Effectiveness of silicon and silicate salts for controlling black root rot and induced pathogenesis-related protein of strawberry plants. Bull. NRC 43:91. https://doi.org/10.1186/s42269-019-0139-1

3. Abd-El-Karem F, Abdallah MA, El-Gamal NG, El-Mougy NS (2004) Integrated control of lupin root rot disease in solarized soil under greenhouse and field condition. Egypt J Phytopathol 32(1-2):49–63

4. Abdel-Sattar MA, El-Marzoky HA, Mohamed AI (2008) Occurrence of soilborne diseases and root knot nematodes in strawberry plants grown on compacted rice straw bales compared with naturally infested soil. J Plant Prot Res 48(2):223–235

5. Ahmed MFA, El-Fiki IAI (2017) Effect of biological control of root rot diseases of strawberry using Trichoderma spp. Middle East J Appl Sci 7:482–492

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3