Nitrilase gene detection and nitrile metabolism in two bacterial strains associated with waste streams in Lagos, Nigeria

Author:

Ogunyemi Adewale Kayode,Buraimoh Olanike Maria,Ogunyemi Bukola Caroline,Samuel Titilola Aderonke,Ilori Matthew Olusoji,Amund Olukayode Oladipo

Abstract

Abstract Background The use of nitrile compounds is usually high, particularly in chemical industries, which calls for serious concern because of their relevance to the environment. The essential role of nitrilases in the bioremediation of harmful nitriles from environmental wastes cannot be overemphasized. The study aimed to unveil the biodegradative potentials of bacterial strains associated with the degradation of nitrile pollutants. Methods Bacterial strains capable of utilizing glutaronitrile as the sole source of carbon and nitrogen were isolated from solid waste leachates by a selective enrichment culture technique. The test organisms were grown in mineral salts medium (MSM), and the metabolic products were determined using gas chromatography-flame ionization detection (GC-FID). The nitrilase gene was amplified by polymerase chain reaction (PCR) and by using appropriate primers. Results The growth studies showed that the test organisms grew on the two nitriles. The doubling times of 12.16 d and 9.46 d (specific growth rate, µ=0.082 d−1, 0.106 d−1) were obtained for  each pure culture of Bacillus sp. srain WOD8 and Corynebacterium sp. srain WOIS2 on glutaronitrile (as single substrate), respectively. While the same strains  had doubling times of 11.11 d and 10.00 d (µ=0.090 d−1, 0.100 d−1) on benzonitrile (as single substrate). However, the mixed culture (comprising the two strains)  had doubling times of 7.40 d and 7.75 d (µ=0.135 d−1, 0.129 d−1) on glutaronitrile (as single  and mixed substrates), respectively.  While doubling times of 8.09 d and 8.71 d (µ=0.124 d−1, 0.115 d−1) were obtained  for the same mixed culture on  benzonitrile (as single and mixed substrates). Based on gas chromatographic analysis, the residual glutaronitrile concentrations at day 16 for strains WOD8 and WOIS2 were 35.77 g L−1 (72.2%) and 9.30  g L−1 (92.5%), respectively, whereas the residual benzonitrile concentrations for the same strains were 27.39 g L−1 (78.8%) and 13.79 g L−1 (89.2%), respectively. For the mixed culture, residual glutaronitrile and benzonitrile concentrations at day 16 were 13.40 g L−1 (88.5%) and 10.42 g L−1 (91.5%), respectively, whereas for the mixed substrates  (glutaronitrile and benzonitrile), 7.21 g L−1 (91.7%) and 4.80 g L−1 (94.2%) of residual glutaronitrile and benzonitrile concentrations were obtained by the same consortium. The gene for nitrilase involved in nitrile degradation was detected in the genome of the bacterial strains. The amplified nitrilase gene gave PCR products of sizes 1400 bp and 1000 bp, as expected for strains WOD8 and WOIS2, respectively. 4-Cyanobutyric acid (4CBA), glutaric acid (GA), and benzoic acid (BA) were obtained as metabolites following nitrile degradation in vitro. Conclusion These results revealed that strains WOD8, WOIS2 and the mixed culture (consisting of the two strains) have proven to have the capacity to metabolize nitriles (glutaronitrile and benzonitrile) as the carbon and nitrogen sources. However, the mixed culture had higher nitrile degradation rate as compared to each pure culture of the two test organisms. These results also provide insight into the evolutionary genetic origin of a nitrilase gene that encodes an enzyme that catalyzes nitrile degradation in these strains. Hence, the bacterial strains that harbor this kind of gene may be used as promising biological agents for the remediation of sites polluted with nitriles, thereby opening new perspectives for encouraging data for a bioremediation bioprocess.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3