Abstract
Abstract
Background and objective
Researches on compost introduced the evidence of its benefits to plant productivity and soil fertility. These advantages are noticed in forms of improving soil water holding capacity and nutrient availability for plants. These changes can also improve plants’ capability to overcome salinity stress conditions. The application of osmo-protectant materials (proline and trehalose) and/or compost addition enhances plant antioxidative defense system against stress conditions. This experiment conducted to study the effect of spraying quinoa plants with proline and trehalose with and without soil compost addition under salinity stress on some morphological and physiological aspects.
Materials and methods
Quinoa plant was grown with or without compost in the soil and foliar sprayed with proline or trehalose under salt irrigation. Plant samples were taken after 60 days from sowing and at the end of the experiment for growth, yield, and biochemical measurements.
Results
Growth and yield measurements were decreased with salinity stress. High levels of both proline and trehalose recorded the highest values of total soluble sugars, proline, and free amino acids in both unstressed or salinity stressed plants with or without compost addition. The use of compost in soil for cultivating quinoa plants with either proline or trehalose treatments increased growth parameters, photosynthetic pigments, and yield attributes. In addition, these treatments improved the accumulation of some organic solutes in leaves and promoted antioxidant enzyme activities.
Conclusion
Compost addition to soil with spraying proline or trehalose improved quinoa growth and yield and produced seed nutritional value.
Publisher
Springer Science and Business Media LLC
Reference72 articles.
1. A.O.A.C. (1990) Official Methods of Analysis.20th edition. Association of Official Analytical Chemists, Arlington, Virginia, U.S.A.
2. Abdallah MMS, Abdelgawad ZA, El-Bassiouny HMS (2016) Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. South African Journal of Botany 103:275–282. https://doi.org/10.1016/j.sajb.2015.09.019
3. Abdallah MMS, El-Bassiouny HMS (2016) Impact of exogenous proline or tyrosine on growth, some biochemical aspects and yield components of quinoa plant grown in sandy soil. International Journal of Phar. Tec. 9(7):12–23 https://www.researchgate.net/publication/309042526
4. Abdallah MMS, Ramadan AA, El-Bassiouny HMS, Bakry BA (2020) Regulation of antioxidant system in wheat cultivars by using chitosan or salicylic acid to improve growth and yield under salinity stress Asian J. of. Plant Sciences. 19(2):114–126. https://doi.org/10.3923/ajps.2020.114.126
5. Ajay KG, Ju-Kon K, Thomas GO, Anil PR, Yang DCh, Leon VK and Ray JW (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci .USA. 10; 99(25): 15898–15903. doi: https://doi.org/10.1073/pnas.252637799
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献