Hydration behavior of an experimental tricalcium silicate/tetracalcium phosphate bio-cement in Streptococcus thermophiles bacterial solution in comparison with distilled water used as a root canal furcation perforation repair material

Author:

Radwan M. M.,Khallaf M. E.ORCID

Abstract

Abstract Background The aim of this study is to evaluate an experimental tricalcium silicate phase (C3S) and tetracalcium phosphate (TTCP) material to be used as a root canal furcation perforation repair. C3S and TTCP phases were synthesized in nano-size particles by firing the required molar ratios of chemically pure reactants by solid-state reactions at elevated temperatures. The influence of Streptococcus thermophilus bacterial medium on the hydration reaction characteristics and morphology of 1:1 composite material of C3S and TTCP in comparison with distilled water was studied. Setting time, micro-hardness, pH of immersion solution, calcium ion concentration, phosphorous ion concentration, XRD, FTIR, scanning electron microscopy and cytotoxicity of the synthesized composite were investigated, and also, its sealing ability in bacterial media and in distilled water was evaluated. Results The results showed that curing of pastes in the bacterial medium did not inhibit the hydration process of the synthesized composite but surface softening due to the great acceleration and encapsulation effects of the highly ionized curing medium resulting in lower micro-hardness values. The dissolution of TTCP phase was also increased in the bacterial medium resulting in precipitation of more hydroxyapatite inside the more porous system of pastes cured in the bacterial solution which was also evident by a non-significant decrease in the sealing ability in bacterial medium. Conclusions Mixing of tricalcium silicate (C3S) and tetracalcium phosphate (TTCP) resulted in a mix that was stable in bacterial medium and could be used for root canal perforation repair.

Funder

National Research Centre

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference44 articles.

1. Achternbosch M, Bräutigam KR, Hartlieb N, Kupsch C, Richers U, Stemmermann P (2003) Heavy metals in cement and concrete resulting from the co-incineratin of wastes in cement kilns with regars to the legitimacy of waste utilization. Forschungszentrum Karlsruhe GmbH, Karlsruhe

2. APHA (American Public Health Association), AWWA (American Water Works Association), and WEF (Water Environment Federation) (2017) Standards Methods for the Examination of Water and Wastewater, 23rd edn. In: Rice EW, Baird RB, Eaton AD, Clesceri LS (eds) Washington DC

3. Aranha AC, Pimenta LA, Marchi GM (2009) Clinical evaluation of desensitizing treatments for cervical dentin hypersensitivity. Braz Oral Res 23(3):333–339

4. Bassyouni FA, Abu-Baker SM, Mahmoud K, Moharam M, El-Nakkady SS, Abdel-Rehim M (2014) Synthesis and biological evaluation of some new triazolo[1,5-a]quinoline derivatives as anticancer and antimicrobial agents”. RSC Adv 4(46):24131–24141

5. Brown PW (1999) Hydration behavior of calcium phosphates is analogous to hydration behavior of calcium silicates. Cem Concr Res 29:1167–1171

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3