A novel signal-adaptive multi-feature extraction algorithm for arrhythmia detection

Author:

Vinutha L. B.ORCID,Ramkumar P. S.,Kunabeva Rajashekar

Abstract

Abstract Background The significant features like an amplitude and intervals of electrocardiograph or P-QRS-T wave represent the functionality of the heart. Accurate extraction of these features helps in capturing characteristics of the signal helpful for the detection of cardiac abnormalities. In this paper, a novel signal folding-based algorithm is proposed to obtain detailed information about the complex morphology of signal. It explores the denoising and feature extraction of the specific ECG signals. Results The experimental study conducted using MIT-BIH Arrhythmia database ECG records with known conditions of left bundle branch block, right bundle branch block, Wolff-Parkinson-White syndrome beats has been considered. Heart rate values for selected ECG records from MIT-BIH dataset and synthetic signals from ECG simulator yielded the same values and thus validate our approach. Conclusion The proposed algorithm determines the heart rate, percentage leakage around the peak and is capable of folding a signal very efficiently based on detected R peaks and period-dependent gate(window).

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference10 articles.

1. Coviello JS (2020) ECG interpretation made incredibly easy, 5th edn. Lippincott Williams & Wilkins, Philadelphia

2. Deriche M, Aljabri S, Al-Akhras M, Siddiqui M, Deriche N (2019) An optimal set of features for multi-class heart beat abnormality classification. In: 16th International multi-conference on systems, signals & devices (SSD'19), IEEE

3. https://physionet.org/content/mitdb/1.0.0/

4. Jones SA (2021) “ECG Notes” interpretation and management guide. FA Davis, Philadelphia

5. Peshave JD, Shastri R (2014) Feature extraction of ECG signal. In: International conference on communication and signal processing, April 3–5, 2014, India

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CVD prediction on micro-controller: ECG morphology learning approach;Innovations in Systems and Software Engineering;2022-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3