Resistance against phomopsis leaf blight disease induced by potassium salts in strawberry plants

Author:

Abd-El-Kareem Farid,Elshahawy Ibrahim E.,Abd-Elgawad Mahfouz M. M.ORCID

Abstract

Abstract Background Growing interest of strawberry cultivation in Egypt necessitates more efforts towards its severe phomopsis leaf blight disease caused by Phomopsis obscurans. Synthetic fungicides could control this fungus but due to their critical impact on human beings and the environment, we are in dire need of safe alternatives for its control. Therefore, the leverage of the potassium bicarbonate and dipotassium phosphate on P. obscurans suppression on strawberry plants was examined. Results Full inhibition of the fungal linear growth was achieved at the highest concentration (2%) of the two salts. Under field conditions, 87.5, 81.3, and 81.3% were the best decreases in disease severity gained by the two salts at 2% of both salts and the fungicide Amstar, respectively. Potassium bicarbonate at 1.5% reduced severity by 68.8%. Concentrations 1, 1.5, and 2% of each salt considerably enhanced strawberry yield. The increases were 66.7 and 61.7%, at 2% concentration by the two salts, respectively. Increments by 126.7 and 150% of peroxidase activity in plant leaves and by 140 and 148% of chitinase activity were noted by the two salts, respectively, at 2%. Conclusions The examined bicarbonate and phosphate salts could suppress P. obscurans growth and spread. The more the used salt concentration, the better it suppresses the fungal growth with consequent effect on the plants which apparently promoted their field yield. Potential implications of the two salts on enhancing activities of the two enzymes reflected their role in suppressing the disease. Further research is needed to integrate these salts in management strategies of P. obscurans in Egypt to foster strawberry yield utilizing ecofriendly approaches.

Funder

Science and Technology Development Fund

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference43 articles.

1. Abd-Elgawad MMM (2019) Plant-parasitic nematodes of strawberry in Egypt: a review. Bull NRC 43:7. https://doi.org/10.1186/s42269-019-0049-2

2. Abd-Elgawad MMM, Kabeil SSA (2012) Biological control of Meloidogyne incognita by Trichoderma harzianum and Serratia marcescens and their related enzymatic changes in tomato roots. Afr J Biotechnol 11:16247–16252

3. Abd-Elgawad MMM, Kabeil SSA, Fanelli E, Molinari S (2012) Different levels of anti-oxidant enzyme activities in tomato genotypes susceptible and resistant to root-knot nematodes. Nematropica 42:328–334

4. Abd-El-Kareem F (2007) Potassium or sodium bicarbonates in combination with Nerol for controlling early blight disease of potato plants under laboratory, greenhouse and field conditions. Egypt J Phytopathol 35:73–86

5. Abd-El-Kareem F, Abd-Alla MA, El-Mohamedy RSR (2001) Induced resistance in potato plants for controlling late blight disease under field conditions. Egypt J Phytopathol 29(2):29–41

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3