Abstract
Abstract
Background
Growing interest of strawberry cultivation in Egypt necessitates more efforts towards its severe phomopsis leaf blight disease caused by Phomopsis obscurans. Synthetic fungicides could control this fungus but due to their critical impact on human beings and the environment, we are in dire need of safe alternatives for its control. Therefore, the leverage of the potassium bicarbonate and dipotassium phosphate on P. obscurans suppression on strawberry plants was examined.
Results
Full inhibition of the fungal linear growth was achieved at the highest concentration (2%) of the two salts. Under field conditions, 87.5, 81.3, and 81.3% were the best decreases in disease severity gained by the two salts at 2% of both salts and the fungicide Amstar, respectively. Potassium bicarbonate at 1.5% reduced severity by 68.8%. Concentrations 1, 1.5, and 2% of each salt considerably enhanced strawberry yield. The increases were 66.7 and 61.7%, at 2% concentration by the two salts, respectively. Increments by 126.7 and 150% of peroxidase activity in plant leaves and by 140 and 148% of chitinase activity were noted by the two salts, respectively, at 2%.
Conclusions
The examined bicarbonate and phosphate salts could suppress P. obscurans growth and spread. The more the used salt concentration, the better it suppresses the fungal growth with consequent effect on the plants which apparently promoted their field yield. Potential implications of the two salts on enhancing activities of the two enzymes reflected their role in suppressing the disease. Further research is needed to integrate these salts in management strategies of P. obscurans in Egypt to foster strawberry yield utilizing ecofriendly approaches.
Funder
Science and Technology Development Fund
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Abd-Elgawad MMM (2019) Plant-parasitic nematodes of strawberry in Egypt: a review. Bull NRC 43:7. https://doi.org/10.1186/s42269-019-0049-2
2. Abd-Elgawad MMM, Kabeil SSA (2012) Biological control of Meloidogyne incognita by Trichoderma harzianum and Serratia marcescens and their related enzymatic changes in tomato roots. Afr J Biotechnol 11:16247–16252
3. Abd-Elgawad MMM, Kabeil SSA, Fanelli E, Molinari S (2012) Different levels of anti-oxidant enzyme activities in tomato genotypes susceptible and resistant to root-knot nematodes. Nematropica 42:328–334
4. Abd-El-Kareem F (2007) Potassium or sodium bicarbonates in combination with Nerol for controlling early blight disease of potato plants under laboratory, greenhouse and field conditions. Egypt J Phytopathol 35:73–86
5. Abd-El-Kareem F, Abd-Alla MA, El-Mohamedy RSR (2001) Induced resistance in potato plants for controlling late blight disease under field conditions. Egypt J Phytopathol 29(2):29–41
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献