Predictive modelling of thermal conductivity in single-material nanofluids: a novel approach

Author:

Onyiriuka EkeneORCID

Abstract

Abstract Background This research introduces a novel approach for modelling single-material nanofluids, considering the constituents and characteristics of the fluids under investigation. The primary focus of this study was to develop models for predicting the thermal conductivity of nanofluids using a range of machine learning algorithms, including ensembles, trees, neural networks, linear regression, Gaussian process regressors, and support vector machines. The main body of the abstract To identify the most relevant features for accurate thermal conductivity prediction, the study compared the performance of established feature selection algorithms, such as minimum redundancy maximum relevance, Ftest, and RReliefF, a newly proposed feature selection algorithm. The novel algorithm eliminated features lacking direct implications for fluid thermal conductivity. The selected features included temperature as a thermal property of the fluid itself, multiphase features such as volume fraction and particle size, and material features including nanoparticle material and base fluid material, which could be fixed based on any two intensive properties. Statistical methods were employed to select the features accordingly. Results The results demonstrated that the novel feature selection algorithm outperformed the established approaches in predicting the thermal conductivity of nanofluids. The models were evaluated using fivefold cross-validation, and the best model was the model based on the proposed feature selection algorithm that exhibited a root-mean-squared error of validation of 1.83 and an R-squared value of 0.94 on validation set. The model achieved a root-mean-squared error of 1.46 and an R-squared value of 0.97 for the test set. Conclusions The developed predictive model holds practical significance by enabling nanofluids' numerical study and optimisation before their creation. This model facilitates the customisation of conventional fluids to attain desired fluid properties, particularly their thermal properties. Additionally, the model permits the exploration of numerous nanofluid variations based on permutations of their features. Consequently, this research contributes valuable insights to the design and optimisation of nanofluid systems, advancing our understanding and application of thermal conductivity in nanofluids and introducing a novel and methodological approach for feature selection in machine learning.

Funder

Tertiary Education Trust Fund

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Geography, Planning and Development

Reference47 articles.

1. Ahmadloo E, Azizi S (2016) Prediction of thermal conductivity of various nanofluids using artificial neural network. Int Commun Heat Mass Transf 74:69–75. https://doi.org/10.1016/j.icheatmasstransfer.2016.03.008

2. Breiman L (2001) Random forests. Mach Learn 45:5–32

3. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. CRC Press, Boca Raton

4. Brownlee J (2020a) A gentle introduction to k-fold cross-validation. Retrieved May 5th 2022 from https://machinelearningmastery.com/k-fold-cross-validation/

5. Brownlee J (2020b) How to fix k-fold cross-validation for imbalanced classification. Retrieved May 27th 2022 from https://machinelearningmastery.com/cross-validation-for-imbalanced-classification/

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimising Al2O3–water nanofluid;Bulletin of the National Research Centre;2024-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3