A combined 2-D and 3-D QSAR modeling, molecular docking study, design, and pharmacokinetic profiling of some arylimidamide-azole hybrids as superior L. donovani inhibitors

Author:

Ugbe Fabian AuduORCID,Shallangwa Gideon Adamu,Uzairu Adamu,Abdulkadir Ibrahim

Abstract

Abstract Background Leishmaniasis is one of the neglected tropical diseases which is prevalent in the tropical regions of the world most especially in Africa. It is caused by the Leishmania species and transmitted to humans majorly through the bite of the female sandfly. This study was carried out in support of the continuous search for new drug molecules effective enough for the treatment of leishmaniasis, and which have very limited side effects. This study was focused on a combined 2-D and 3-D QSAR modeling of thirty-six arylimidamide-azole hybrids, molecular docking study, design, and pharmacokinetic analysis of some selected and newly designed arylimidamide-azole analogs. The density functional theory (DFT) with B3LYP and 6-31G** basis set was employed for the geometry optimization of the various compounds. Genetic function approximation (GFA) and multi-linear regression (MLR) approaches were used for the 2-D QSAR model building, while the fractional factorial design (FFD) and uninformative variable elimination-partial least square (UVEPLS) were employed for building the 3-D QSAR model. Pyridoxal kinase (PdxK) receptor (PDB: 6K91) was the target protein of interest in this study. Results The built 2-D and 3-D QSAR models were found to satisfy the requirement of both internal and external validation tests as follows: 2-D QSAR; R2 = 0.9614, R2adj = 0.9513, Q2cv = 0.9350, R2test = 0.6766 and cRp2 = 0.8779, and for 3-D QSAR (UVEPLS at PC = 5); R2 = 0.9839, Q2LOO = 0.7539 and Q2LTO = 0.7367. The CoMFA steric and electrostatic field contributions were 68.96% and 31.04%, respectively. All the designed analogs showed higher predicted activities than that of the template (36). Also, the new compounds showed higher binding affinities (MolDock scores) than that of the reference drug pentamidine (− 141.793 kcal/mol), with 36e showing the highest negative MolDock score of − 208.595 kcal/mol. Additionally, these newly designed compounds were said to be orally bioavailable (excluding 36f and 36g that violated 2 of the Lipinski’s provisions), with perfect intestinal absorption, less difficult to synthesize, AMES toxicity free, and showed strong interactions with the target. Conclusions The newly designed compounds especially 36e have shown a marked pharmacological improvement over the template molecule and are therefore recommended for further practical evaluation as superior pyridoxal kinase inhibitors.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference40 articles.

1. Abdelhameed A (2018) The design and synthesis of cyanines and arylimidamide azole hybrids as antilesihmanaial agents, Ph.D. dissertation The Ohio State University. https://gradsch.osu.edu/calendar/events/design-and-synthesis-cyanines-and-arylimidamide-azole-hybrids-antileishmanial-agents: Accessed on 11/02/2022

2. Abdelhameed A, Feng M, Joice C, Zywot EM, Jin Y, Rosa CL, Liao X, Meeds HL, Kim Y, Li J, McElroy CA, Wang MZ, Werbovetz KA (2020) Synthesis and antileishmanial evaluation of arylimidamide−azole hybrids containing a phenoxy alkyl linker. ACS Infect Dis. https://doi.org/10.1021/acsinfecdis.0c00855

3. Abdullahi A, Shallangwa GA, Ibrahim MT, Bello AU, Arthur DE, Uzairu A, Mamza P (2019) QSAR studies on some C14-urea tetrandrine compounds as potent anti-cancer agents against Leukemia cell line (K562). JOTCSA 5(3):1391–1402

4. Abdullahi SA, Uzairu A, Shallangwa GA, Uba S, Umar AB (2022) In-silico activity prediction, structure-based drug design, molecular docking and pharmacokinetic studies of selected quinazoline derivatives for their antiproliferative activity against triple negative breast cancer (MDA-MB231) cell line. Bull Natl Res Centre 46:2

5. Adawara SN, Shallangwa GA, Mamza PA, Ibrahim A (2020) Molecular docking and QSAR theoretical model for prediction of phthalazinone derivatives as new class of potent dengue virus inhibitors. Beni-Suef Univ J Basic Appl Sci 9(50):1–17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3