In vitro regeneration and molecular characterization of Jatropha curcas plant

Author:

El-Sayed Mohamed,Aly Usama I.,Mohamed Mervat S.,Rady Mohamed R.

Abstract

Abstract Background and objective A simple, rapid, efficient, and reproducible protocol for callus induction and regeneration of plantlets from callus of Jatropha curcas plant was established. Materials and methods Randomly amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analyses were used to determine the genetic variation between the regenerated, micropropagated, and mother plants. Results The highest callus induction percentage from leaf explant was recorded with MS medium containing 2.5 mg/l BA (6-benzylaminopurine) + 1.0 mg/l NAA (1-naphthaleneacetic acid). Leaf-derived callus was grown on medium containing 2.0 mg/l BA + 0.2 mg/l IBA (indole-3-butyric acid) for adventitious shoot regeneration. In addition, using five random RAPD primers with the tested samples produced 117 amplified products out of which 25 were polymorphic bands resulting in 21.37% polymorphism, whereas the five ISSR primers used yielded 116 scorable bands out of which 22 were polymorphic bands producing a polymorphism pecentage of 18.96. Conclusion An optimized protocol for large-scale production of J. curcas plants using plant biotechnology tools was achieved. RAPD and ISSR techniques would introduce an alternative system for large-scale production and establishment of genetically stable plants.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference45 articles.

1. Abdel-Tawab FM, Abo-Doma A, Allam AI, El-Rashedy HA (2001) Assessment of genetic diversity for eight sweet sorghum cultivars (Sorghum bicolor L.) using RAPD analysis. Egypt. J. Geney Cytol 30(1):41–50

2. Adawy SS, El-Sherbieny HY (1999) Genotype identification and estimation of genetic distance among elite maize inbred lines using RAPD markers. Proc. Of VI National Conference for Environmental Studies and Research, Egyptian Desert Environmental Development, Ain-Shams Univ., Institute of Environmental Studies and Research. Nov., 7- 9: 245- 260

3. Alkimim ER, Sousa TV, Soares BO, Souza DA, Juhász ACP, Nietsche S, Costa MR (2013) Genetic diversity and molecular characterization of physic nut genotypes from the active germplasm bank of the Agricultural Research Company of Minas Gerais, Brazil. Afr J Biotechnol 12(9):907–913

4. Arolu IW, Rafii MY, Hanafi MM, Mahmud TMM, Latif MA (2012) Molecular characterization of Jatropha curcas germplasm using inter simple sequence repeat (ISSR) markers in Peninsular Malaysia. Aust J of Crop Sci 6(12):1666–1673

5. Basha SD, Francis G, Makkar HPS, Becker K, Sujatha M (2009) A comparative study of biochemical traits and molecular markers for assessment of genetic relationships between Jatropha curcas L. germplasm from different countries. Plant Sci 176(6):812–823

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3