FPGA design and implementation for adaptive digital chaotic key generator

Author:

Elsayed GhadaORCID,Soleit Elsayed,Kayed Somaya

Abstract

Abstract Background Information security is very important in today’s digital world, especially cybersecurity. The most common requirement in securing data in all services: confidentiality, digital signature, authentication, and data integrity is generating random keys. These random keys should be tested for randomness. Hardware security is more recommended than software. Hardware security has more speed and less exposure to many attacks than software security. Software security is vulnerable to attacks like buffer overflow attacks, side-channel attacks, and Meltdown–Spectre attacks. Results In this paper, we propose an FPGA Implementation for the adaptive digital chaotic generator. This algorithm is proposed and tested before. We introduce its implementation as hardware. This algorithm needs a random number seed as input. We propose two designs. The first one has an input random number. The second one has PRNG inside. The target FPGA is Xilinx Spartan 6 xc6slx9-2-cpg196. We used MATLAB HDL Coder for the design. We propose a configurable Key block’s length. For 32 bit the maximum frequency is 15.711 MHz versus 11.635 MHz for the first and second designs respectively. The area utilization of the Number of Slice Registers is 1% versus 2%. The number of Slice Look Up Tables is 40% versus 59%. number of bonded input output blocks is 64% versus 66%. otherwise are the same for the two designs. Conclusions In this paper, we propose an efficient and configurable FPGA Design for adaptive digital chaotic key generator. Our design has another advantage of storing the output keys internally and reading them later.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FPGA implementation of Chaotic pseudo-random number generator for cryptographic applications;2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP);2024-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3