Author:
Arthur David Ebuka,Akoji Jibrin Noah,Sahnoun Riadh,Okafor Greatman C.,Abdullahi Karimatu Lami,Abdullahi Samira A.,Mgbemena Charles
Abstract
Abstract
Background
A series of known Food and Drug Administration (FDA) approved anticancer drugs were collected from the literature and docked against mTOR receptor which has been identified in present time as a target for therapeutic anticancer agents. The compounds binding affinity were calculated after minimising the interaction within the binding pockets’ of the mTOR (4JT6) receptor.
Results
The result shows that PF-04691502 ligand best inhibited mTOR while occupying the Adenosine triphosphate (ATP)-binding site on the receptor. PF-04691502 had the best binding affinity with a reported value of − 39.261 kcal/mol, and a hydrogen bond energy contribution of − 8.326 kcal/mol. Polamid529 is also found to have a good binding affinity of − 36.75 kcal/mol with the receptor, but was less significant than that calculated for the reference or standard inhibitor (X6K) used (− 37.862 kcal/mol). Further analysis revealed that Palomid529 formed a more stable complex with the receptor than torin2 and X6K due to the significant hydrogen bond contributions it adds to its overall binding score.
Conclusion
PF-04691502 ligand was identified as the best inhibitor due to its high binding affinity for mTOR and should be considered as the best alternative to the reference inhibitor X6K.
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献