Silver nanoparticles in diabetes mellitus: therapeutic potential and mechanistic insights

Author:

Paul SusantaORCID,Sarkar Ishita,Sarkar Nilanjan,Bose Anannya,Chakraborty Mainak,Chakraborty Amrita,Mukherjee Swarupananda

Abstract

Abstract Background Research on the use of silver nanoparticles in the context of diabetes mellitus has gained attention due to the unique properties of these nanoparticles, such as their antimicrobial, anti-inflammatory, and antioxidant characteristics. While the field is still in its early stages, several studies have explored the potential applications and effects of silver nanoparticles in managing diabetes. Main body of the abstract Diabetes mellitus, a global health concern marked by impaired insulin function and high blood glucose levels, has spurred innovative therapeutic investigations, including nanotechnology. Silver nanoparticles have emerged as promising candidates in this pursuit. This abstract provides an overview of current research on silver nanoparticles’ application in managing diabetes mellitus, highlighting their therapeutic potential and mechanisms of action. With unique physicochemical properties like high surface area and bio-compatibility, silver nanoparticles are ideal for diverse biomedical applications. Recent studies show their ability to modulate key pathways in diabetes pathogenesis, enhancing insulin sensitivity, reducing oxidative stress, and supporting pancreatic beta-cell function. Their antimicrobial properties are particularly beneficial for diabetes patients prone to infections. Moreover, using silver nanoparticle-based carriers for anti-diabetic drugs improves drug bio-availability and reduces side effects, potentially enhancing conventional medication efficacy. However, addressing safety and toxicity concerns is crucial. Ongoing research focuses on optimizing nanoparticle size, shape, and surface modifications to enhance bio-compatibility and minimize adverse effects. Short conclusion In conclusion, silver nanoparticles represent a novel and multifaceted approach in the management of diabetes mellitus. Their ability to target multiple facets of diabetes pathogenesis, including insulin resistance, oxidative stress, and inflammation, positions them as potential candidates for future therapeutic interventions. However, further research is warranted to elucidate their long-term safety profile and optimize their application in clinical settings.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3