Water bodies are potential hub for spatio-allotment of cell-free nucleic acid and pandemic: a pentadecadal (1969–2021) critical review on particulate cell-free DNA reservoirs in water nexus

Author:

Igere Bright EsegbuyotaORCID,Onohuean Hope,Nwodo Uchechukwu U.

Abstract

Abstract Background In recent times, there had been report of diverse particulate nucleic acid-related infections and diseases which have been associated with endemic, sporadic, and pandemic reports spreading within water nexus. Some of such disease cases were seldom reported in earlier years of technological advancement and research based knowledge-scape. Although the usefulness of water, wastewater treatment systems, water regulatory organizations and water re-use policy in compliant regions remains sacrosanct, it has been implicated in diverse gene distribution. Main body A cosmopolitan bibliometric and critical assessment of cell-free DNA reservoir in water bodies was determined. This is done by analysing retrieved pentadecadal scientific publications in Scopus and Pubmed centre database, determining the twelve-monthly publication rates of related articles, and a content-review assessment of cell-free nucleic acids (cfNAs) in water environment. Our results revealed thirty-eight metric documents with sources as journals and books that conform to the inclusion criteria. The average reports/publication rate per year shows 16.7, while several single and collaborating authors are included with a collaboration index of 4.31. A zero average citation per document and citation per year indicate poor research interest and awareness. Short conclusion It is important to note that a redirected interest to studies on cfNAs in water environments would encourage advancement of water treatment strategies to include specific approaches on the removal of cfNAs, membrane vesicles or DNA reservoirs, plasmids or extra-chromosomal DNA and other exogenous nucleic acids from water bodies. It may also lead to a generational development/improvement of water treatment strategies for the removals of cfNAs and its members from water bodies.

Funder

Govan Mbeki Research and Development Centrem, University of Fort Hare

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3