Design, pharmacokinetic profiling, and assessment of kinetic and thermodynamic stability of novel anti-Salmonella typhi imidazole analogues

Author:

Ameji John PhilipORCID,Uzairu Adamu,Shallangwa Gideon Adamu,Uba Sani

Abstract

Abstract Background Typhoid fever, a disease caused by a gram negative bacterial species known as Salmonella typhi, constitutes a significant cause of morbidity and mortality, especially in developing nations of the world. Antibiotic therapy is the major treatment option currently but the rising incidences of resistance to existing antibiotics has necessitated the search for newer ones. The aim of this study is to apply in silico techniques to design highly potent novel imidazole-based drug candidates that strongly antagonize a cell invasion protein (SipA) of Salmonella typhi. Methods In this study, a set of anti-Salmonella typhi imidazole analogues were subjected to molecular docking against an important cell invasion protein of the bacterium known as SipA using PyRx graphical user interface of AutoDock Vina software. The best ligand was selected as template for designing more potent analogues. Drug-likeness, pharmacokinetic and toxicity profiles of the designed ligands were assessed through the use of Swiss ADME online tool and Osiris DataWarrior V5.5.0 chemo-informatics program. Kinetic and thermodynamic stabilities of the ligands were ascertained via Density Functional Theory’s Becke-3-parameter Lee–Yang–Parr hybrid functional and 6-31G** basis set-based quantum chemical calculations. Results The bioactive ligands were found to possess Gibb’s free binding energy (ΔG) values ranging from − 5.4 to − 6.7 kcal/mol against the active sites of the protease. Ligand 13 with ΔG = − 6.7 kcal/mol was used as template to design more potent analogues; B-1 and B-2 with ΔG value of − 7.8 kcal/mol and − 7.6 kcal/mol, respectively, against the protein target. When compared with ciprofloxacin used as control with ΔG value of − 6.8 kcal/mol, the designed ligands were found to be more potent. Furthermore, drug-likeness and ADMET profiling of the designed ligands revealed that they have excellent oral bioavailability and sound pharmacokinetic profiles. In addition, quantum chemical calculations revealed HOMO–LUMO energy gap of 3.58 eV and 3.45 eV; and global electrophilicity index of 4.95 eV and 4.79 eV for B-1 and B-2 ligands, respectively, indicative of their favorable kinetic and thermodynamic stabilities. Conclusions It is envisaged that the findings of this study would provide an excellent blueprint for developing novel antibiotics against multidrug resistant Salmonella typhi.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3