Abstract
Abstract
Background
This work presents an experience done to evaluate the number of very small objects in the field of view of a stereo microscope, which are usually counted by direct observation, with or without the use of grids as visual aids. We intend to show that deep learning recent algorithms like YOLO v5 are adequate to use in the evaluation of the number of objects presented, which can easily reach the 1000 s. This kind of algorithm is open-source software, requiring a minimum of skills to install and run on a regular laptop. We further intend to show that the robustness of these kinds of approaches using convolutional neural networks allowed for the use of images of less quality, such as the images acquired with a cell phone.
Results
The results of training the algorithm and counting microalgae in cell phone images were assessed through human curation in a set of test images and showed a high correlation, showing good precision and accuracy in detections.
Conclusions
This is a low-cost alternative available worldwide to many more facilities than expensive cameras and high-maintenance rigid set-ups, along with software packages with a slow learning curve, therefore enlarging the scope of this technique to areas of knowledge where the conditions of laboratory and human work are a limiting factor.
Funder
Fundação para a Ciência e Tecnologia
Publisher
Springer Science and Business Media LLC
Reference25 articles.
1. Andersen RA, Berges JA, Harrison PJ, Watanabe MM (2005) Appendix A-Recipes for freshwater and seawater media. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Oxford, pp 429–538
2. Cao C, Liu F, Tan H, Song D, Shu W, Li W, Zhou Y, Bo X, Xie Z (2018) Deep learning and its applications in biomedicine. Genom Proteom Bioinf 16:17–32
3. Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP et al (2018) Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface 15(141):20170387. https://doi.org/10.1098/rsif.2017.0387
4. Devan KS, Walther P, von Einem J, Ropinsky T, Kestler HA, Read C (2019) Detection of herpesvirus capsids in transmission electron microscopy images using transfer learning. Histochem Cell Biol 151:101–114
5. GitHub Ultralytics n.d. GitHub - ultralytics/yolov5: YOLOv5 in PyTorch > ONNX > CoreML > TFLite. Accessed 21 June 2021
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献