High-yield production and biochemical characterization of α-galactosidase produced from locally isolated Penicillium sp.

Author:

Kote Naganagouda,Manjula A. C.,Vishwanatha T.,Patil Aravind Gouda G.

Abstract

Abstract Background α-Galactosidase is widely used in various biotechnological applications such as food processing, beet sugar, the pulp and paper industries, synthesis of oligosaccharides by trans-galactosylation, hydraulic fracturing of oil and gas wells, and medical applications. Results Screening and identification of fungi for α-galactosidase activity was performed. The isolate Penicillium sp. showed good α-galactosidase activity. α-Galactosidase production by the fungal strain Penicillium sp. cultivated in solid state fermentation (SSF) conditions using copra mannan extract as nutrient medium was investigated. The maximum α-galactosidase activity of 5.391 U/mL was obtained in defatted copra meal (dFCO) as carbon source, which is 2–3% greater as compared with commercial mannans and unprocessed copra meal. The highest product yield of α-galactosidase was obtained with media containing yeast extract (6.672 U/ml) as organic nitrogen and ammonium nitrate (6.325 U/ml) and as inorganic nitrogen source with media pH 5.5, and the time course of enzyme production was at the 5th day of fermentation, respectively. The optimum pH of α-galactosidase was obtained at pH 5 and optimum temperature at 60 °C. The enzyme was stable between pH 4 and 6 and retained more than 50% of residual activity for an 8-h incubation period. The Ca+2 ions enhanced the enzyme activity and Mn+2 ions have not altered the enzyme activity, whereas Hg+2 strongly inhibited the enzyme activity. Conclusions The findings of present investigations on α-galactosidase are of particular interest for its application in the food processing industry.

Funder

UGC-DAE Consortium for Scientific Research, University Grants Commission

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference34 articles.

1. Álvarez-Cao ME, Rico-Díaz A, Cerdán ME, Becerra M, González-Siso MI (2018) Valuation of agro-industrial wastes as substrates for heterologous production of α-galactosidase. Microb Cell Factories 17:1–13

2. Álvarez-Cao ME, Cerdán ME, González-Siso MI, Becerra M (2019) Bioconversion of beet molasses to α-galactosidase and ethanol. Front Microbiol 10(405):1–15

3. Anisha GS. (2017) “α-Galactosidases,” in current developments in biotechnology and bioengineering: production, isolation and purification of industrial products. eds A. Pandey, S. Negi, and C. Soccol (Amsterdam: Elsevier B.V.),369–394.

4. Balabanova LA, Bakunina IY, Nedashkovskaya OI et al (2010) Molecular characterization and therapeutic potential of a marine bacterium Pseudoalteromonas sp. KMM 701 α-galactosidase. Mar Biotechnol (NY) 12:111–120

5. Bhatia S, Singh A, Batra N, Singh J (2019) Microbial production and biotechnological applications of α-galactosidase. Int J Biol Macromol 17(150):1294–1313

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3