A proposed insight into the anti-viral potential of metallic nanoparticles against novel coronavirus disease-19 (COVID-19)

Author:

Ibrahim Fouad GhadhaORCID

Abstract

Abstract Background Over the last ten months since December 2019, the world has faced infectious emerging novel coronavirus disease-2019 (COVID-19) outbreaks that had a massive global impact affecting over 185 countries. Main body Emerging novel COVID-19 is a global health emergency on a pandemic scale that represents a terror to human health through its ability to escape anti-viral measures. Such viral infections impose a great socioeconomic burden, besides global health challenges. This imposes a pressing need for the development of anti-viral therapeutic agents and diagnostic tools that demonstrate multifunctional, target-specific, and non-toxic properties. Nanotheranostics is regarded as a promising approach for the management of different viral infections. Nanotheranostics facilitates targeted drug-delivery of anti-viral therapeutics as well as contributing to the development of diagnostic systems. Multifunctional metallic nanoparticles (NPs) have emerged as innovative theranostic agents that enable sustainable treatment and effective diagnosis. Here we have reviewed current advances in the use of theranostic metallic NPs to fight against COVID-19, and discussed the application as well as limitations associated with nanotechnology-based theranostic approaches. Conclusion This review verified the potential use of some metal-based NPs as anti-viral nanotheranostic agents. Metal-based NPs could act as carriers that enable the sustainable and targeted delivery of active anti-viral molecules, or as diagnostic agents that allow rapid and sensitive diagnosis of viral infections.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference193 articles.

1. Abdal Dayem A, Hossain MK, Lee SB, Kim K et al (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. IJMN 18(1):120

2. Achutha AS, Pushpa VL, Suchitra S (2020) Theoretical insights into the anti-SARS-CoV-2 activity of chloroquine and its analogs and in silico screening of main protease inhibitors. J Proteome Res 19(11):4706–4717

3. Ahmed SR, Kim J, Suzuki T, Lee J, Park EY (2016) Detection of influenza virus using peroxidase-mimic of gold nanoparticles. Biotechnol Bioeng 113(10):2298–2303

4. Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KF, Banik S, Hosokawa T, Saito T, Kurasaki M (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 1(9):1–6

5. Al-Jamal WT, Kostarelos K (2007) Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomed (Lond). 2(1):85–98

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3