Bond strength and marginal adaptation of a novel root-end filling material

Author:

Aly Yousra,El Shershaby Sherif,El-Sherif Sammar

Abstract

Abstract Background Apicoectomy with retrograde filling is considered as a tooth saver. Mineral trioxide aggregate (MTA) is mostly recommended as a root-end filling material as it is proved to have excellent sealing ability and hard tissue repair. Aside from these advantages, MTA has some disadvantages, such as weak handling properties, long setting time, and discoloration potential. Nanotechnology is now undergoing rapid development. Recently, experimental nano-white mineral trioxide aggregate (nano-WMTA) was prepared and introduced by NanoTech Egypt (Al Giza, Egypt) as a root-end filling material. The manufacturers claim that it has similar composition to white MTA, but with the reduction of its particle size to obtain a high specific powder surface area that may lead to a better and faster hydration process. It seems worthy to study the bond strength and marginal adaptation of the newly introduced nano root-end filling materials and compare it with the conventionally used MTA in root-end cavities. Results In push-out test, no statistically significant difference was found between nano-WMTA and MTA Angelus groups where p = 0.459. The nano-WMTA group recorded the highest mean value. For scanning electron microscope evaluation, there was a statistically significant difference between the nano-WMTA and MTA Angelus groups where p < 0.001. The MTA Angelus group recorded the highest mean value of gap distance. Conclusions Nano-WMTA recorded a similar bond strength to MTA Angelus. The nano-WMTA showed significantly higher marginal adaptation to root-end cavity than MTA Angelus.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3