Author:
Owolabi Olufemi D.,Abdulkareem Saratu I.,Ajibare Adefemi O.
Abstract
Abstract
Background
Pollution arising from the noxiousness of palm oil mill effluent (POME) has become a serious threat to aquatic biotas. However, a paucity of information exists on fish response to POME-mediated oxidative stress, lipid peroxidation, haemato-biochemical, enzymatic and ionic changes. This study, therefore, evaluates the effects of 28-day exposure of Heteroclarias, a hybrid catfish, to POME. Juvenile Heteroclarias (n = 350, average weight: 11.90 ± 0.70 g and average length: 9.04 ± 0.71 cm) were exposed to sublethal concentrations (0-control, 4.00, 8.00 and 12.00 mg/l) of POME to determine its effects on red blood cells (RBC), haemoglobin (HB), packed cell volume (PCV), white blood cells (WBC), mean cell haemoglobin (MCH), mean cell haemoglobin concentration (MCHC) and mean cell volume (MCV). The activities of alanine aminotransaminase (ALT), aspartate aminotransaminase (AST), lactate dehydrogenase (LDH), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and the levels of malondialdehyde (MDA), calcium (Ca+), potassium (K+), magnesium (Mg2+) and sodium (Na+) ions were also assayed in the gill and liver.
Results
Exposure to POME caused significant (p < 0.05) concentration-dependent decrease in RBC, HB, PCV, MCV, MCH and MCHC values, whereas a significant (p < 0.05) concentration-dependent increase in WBC was observed in POME-exposed fish compared to the control. ALT, AST, LDH, GPx, SOD and CAT activities in the gill and liver significantly (p < 0.05) increased in a concentration-dependent manner. MDA level significantly (p < 0.05) increased in the gill relative to control, while in the liver it was insignificantly different. Both tissues exhibited an increase in Ca+, K+, Mg2+ and Na+ levels at the highest toxicant concentration with a rise of 77.93, 38.46, 109.54 and 41.99% recorded for the electrolytes in the gill and 79.17, 26.92, 55.48 and 38.78% in the liver above the control value, respectively. The levels of all the electrolytes except K+ were higher in the gill than the liver and were in the order: Na+ > K+ > Mg+ > Ca2+ in both tissues.
Conclusions
These results may be used as a suitable tool for pollution assessment and policy formulation to mitigate the discharge of untreated POME into aquatic ecosystems and their impacts on resident organisms.
Publisher
Springer Science and Business Media LLC
Reference87 articles.
1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126
2. Akinrotimi OA, Orlu EE, Gabriel UU (2013) Haematological responses of Tilapia guineensis treated with industrial effluents. Appl Ecol Environ Sci 1(1):10–13
3. Ali HI, Irvan D, Mohammed NA, Arezoo FD (2012) Comparative study on characterisation of Malaysian palm oil mill effluent. Res J Chem Sci 2(12):1–5
4. Alimba CG, Saliu JK, Ubani-Rex OA (2013) Cytogenotoxicity and histopathological assessment of Lekki Lagoon and Ogun River in Synodontis clarias (Linnaeus, 1758). Toxicol Environ Chem 97:221–234
5. Alimba CG, Adekoya KO, Soyinka OO (2019) Exposure to effluent from pharmaceutical industry induced cytogenotoxicity, haematological and histopathological alterations in Clarias gariepinus (Burchell, 1822). EXCLI J 18:63–78