Abstract
Abstract
Background
Atherosclerosis is a chronic lipid-driven inflammatory disease with infiltration of low-density lipoprotein and is considered as the pivotal step in plaque formation. The aim of the review is to get into the fine details of pathophysiologic mechanisms responsible for atherosclerosis with atherosclerotic lesion classification. It also provides a summary of current biomarkers other than the traditional risk factors so that new treatment modalities can emerge and reduce the morbidity and mortality associated with atherosclerosis.
Main body
In the classification of atherosclerosis made by American Heart Association (AHA), AHA Type I lesion is the earliest vascular change described microscopically. AHA Type II lesion is primarily composed of abundant macrophages. AHA Type III lesion is the earliest of progressive lesions, while AHA Type IV lesion consists of an acellular necrotic core. Various biomarkers are implicated in different stages of the pathophysiological mechanism of plaque formation and evolution. C Reactive Protein plays a direct role in promoting the inflammatory component of atherosclerosis. Fibrinogen was demonstrated to be elevated among patients with acute thrombosis. Higher leukocyte count is associated with a greater cardiovascular risk. Cytokines have been implicated in atheroma formation and complications. High rates of protease activated receptor expression are also induced by interleukin-6 secretion in atherosclerotic lesions and areas of vascular tissue injury. Cluster of differentiation 40 receptor and its ligand have been also detected in atherosclerotic plaques. Osteopontin, acidic phosphoprotein, and osteoprotegerin have emerged as novel markers of atherosclerotic plaque composition. There are also overproductions of matrix metalloproteinases in the rupture-prone regions and promote lipid-necrotic core formation in the atherosclerotic plaque. Myeloperoxidase has been proposed as a marker of plaque instability. Oxidized low-density lipoprotein receptor 1 provides a route of entry for oxidized low-density lipoprotein into the endothelium. A human atherosclerotic lesion also expresses lipoprotein-associated phospholipase A2.
Short conclusion
Atherosclerotic plaques are the battlefield between an unbalanced immune response and lipid accumulation in the intima of arteries. Most of the biomarkers associated with atherosclerosis are indicators of inflammatory response and will also be used for medical purposes.
Publisher
Springer Science and Business Media LLC
Reference219 articles.
1. Alexander R, Dzau V (2000) Vascular biology: the past 50 years. Circulation 102: IV-112–IV-116
2. Alsulaimani S, Gardener H, Elkind M, Cheung K, Sacco R, Rundek T (2013) Elevated homocysteine and carotid plaque area and densitometry in the northern Manhattan study. Stroke 44:457–461
3. Alvarez B, Ruiz C, Chacon P, Alvarez-Sabin J, Matas M (2004) Serum values of metalloproteinase-2 and metalloproteinase-9 as related to unstable plaque and inflammatory cells in patients with greater than 70% carotid artery stenosis. J Vasc Surg 40:469–475
4. Alvarez B, Yugueros X, Fernandez E, Luccini F, Gene A, Matas M (2012) Relationship between plasma homocysteine and the morphological and immunohistochemical study of carotid plaques in patients with carotid stenosis over 70%. Ann Vasc Surg 26:500–505
5. Alvaro-González L, Freijo-Guerrero M, Sádaba-Garay F (2002) Inflammatory mechanisms, arteriosclerosis and ischemic stroke: clinical data and perspectives. Rev Neurol 35:452–462
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献