Abstract
Abstract
Background
Heavy metals are well documented to induce reproductive toxicity. This study was designed to investigate the role of vitamin E and quercetin on reproductive toxicity mediated by lead acetate in male Wistar rats. Thirty male adult Wistar rats were grouped into six (n = 5 per group) as follows: Group 1 (Control); Group 2 and 3 were administered with 100 mg/kg vitamin E and quercetin, respectively; Group 4 was administered with 30 mg/kg lead acetate; Groups 5 and 6 received lead acetate with vitamin E and lead acetate with quercetin, respectively.
Results
Lead acetate significantly increased (p < 0.05) testicular malondialdehyde, nitric oxide, lead ion and abnormal sperm morphology, while testicular catalase, superoxide dismutase activities, calcium ion, zinc ion, serum follicle stimulating hormone, luteinizing hormone, testosterone, sperm count, motility, average path, curvilinear velocity, and sperm viability were significantly reduced (p < 0.05). The co-administration of lead acetate with vitamin E and quercetin significantly reversed (p < 0.05) the testicular level of malondialdehyde, nitric oxide, lead ion, abnormal sperm morphology, catalase superoxide dismutase activities, calcium ion, zinc ion, follicle stimulating hormone, luteinizing hormone, testosterone, sperm count, motility, average path velocity and sperm viability.
Conclusions
Vitamin E and quercetin attenuated the reproductive toxicity induced by lead acetate in the male Wistar rats, and this suggests that vitamin E and quercetin may serve as possible therapeutic agents in improving male reproductive functions in heavy metal toxicity.
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Abd El-Latief MH (2015) Protective effect of quercetin and or zinc against lead toxicity on rat testes. Glob J Pharmacol 9(4):366–376
2. Abdel-Daim MM, Alkahtani S, Almeer R, Gadah A (2020) Alleviation of lead acetate-induced nephrotoxicity by Moringa oleifera extract in rats: highlighting the antioxidant, anti-inflammatory, and anti-apoptotic activities. Environ Sci Pollut Res 27(27):33723–33731. https://doi.org/10.1007/s11356-020-09643-x
3. Ademosun AO, Oboh G, Bello F, Ayeni PO (2016) Antioxidative properties and effect of quercetin and its glycosylated form (rutin) on acetylcholinesterase and butyrylcholinesterase Activities. J Evidence Based Complement Altern Med 21(4):11–17. https://doi.org/10.1177/2156587215610032
4. Annapurna A, Ansari MA, Manjunath PM (2013) Partial role of multiple pathways in infarct size limiting effect of quercetin and rutin against cerebral ischemia-reperfusion injury in rats. Eur Rev Med Pharmacol Sci 17(4):491–500
5. Ayinde CO, Ogunnowo S, Ogedegbe AR (2012) Influence of Vitamin C and Vitamin E on testicular zinc content and testicular toxicity in lead exposed albino rats. BMC Pharmacol Toxicol 13:17–24. https://doi.org/10.1186/2050-6511-13-17
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献